Электронные системы питания двигателя, работающего на сжиженном нефтяном газе. Система питания газового двигателя Система питания автомобилей от газа

Газобаллонная установка для сжиженных газов (рис. 60) состоит из баллона с арматурой, вентилей, испарителя, редуктора и смесителя.

В качестве топлива для газобаллонных автомобилей применяют сжиженные горючие газы, имеющие достаточно высокие теплотворность и октановое число. Газовоздушная горючая смесь сгорает более полно, в результате чего отработавшие газы содержат меньше вредных примесей и в меньшей степени засоряют окружающую среду. Наибольшее распространение в качестве топлива для газобаллонных автомобилей получили сжиженные газы - главным образом бутанопропановые смеси. Такие смеси получают на нефтеперерабатывающих заводах в качестве побочного продукта.

В среде окружающего воздуха бутанопропановая смесь находится в парообразном состоянии.

Газ, из баллона по трубкам через вентили, испаритель и фильтр поступает к редуктору, снижающему его давление до рабочего, и далее в смеситель. Газовоздушная смесь из смесителя поступает в цилиндры двигателя.

Баллон для сжиженного газа делают сварным из листовой стали; на нем устанавливают расходные вентили для паровой и жидкостной фракций, указатель уровня жидкого газа, предохранительный клапан, наполнительный вентиль и вентиль для контроля максимального заполнения баллона жидким газом. Баллон заполняют жидким газом на 90% объема с тем, чтобы над поверхностью жидкого газа была паровая подушка.

Вентили имеют одинаковое устройство и отличаются друг от друга только количеством и расположением штуцеров, к которым присоединяются трубки. Вентиль состоит из корпуса, диафрагмы, зажимной и упорной гаек, штока с резьбой и маховика. Диафрагма изолирует привод клапана от полости, где он помещен; в противном случае при открытом клапане газ сможет проникнуть наружу через неплотно прилегающую резьбу штока.

Испаритель сжиженного газа служит для испарения жидкого газа.

Испаритель состоит из корпуса, внутри которого расположены последовательно соединенные круглые каналы, имеющие водяную полость. Испарение жидкого газа происходит благодаря подогреву каналов теплом охлаждающей жидкости из системы охлаждения двигателя.

Редуктор понижает давление газа до рабочего и препятствует поступлению газа к смесителю при неработающем двигателе. Двухступенчатые редукторы мембранно-рычажного типа имеют две камеры, В первой давление газа снижается и составляет 0,12... 0,15 МПа, во второй оно несколько выше атмосферного (на 10...20 мм водяного столба). .Камеры сообщаются между собой отверстием с клапаном. В камере первой ступени имеются резинотканевая диафрагма, пружина, коленчатый рычаг, клапан, штуцер с фильтром, крышка и регулировочная гайка. Камера второй ступени подобна по устройству камере первой ступени, но у нее отсутствует штуцер с фильтром, а дополнительно установлено разгрузочное идозирующе-экономайзерное устройство.

При закрытом магистральном вентиле газ к редуктору не поступает, пружина камеры первой ступени давит на диафрагму, прогибая ее внутр. Прогнутая диафрагма заставляет коленчатый рычаг держать клапан первой ступени открытым. В камере второй ступени пружина отводит диафрагму вверх, клапан закрыт. Пружина разгрузочного устройства при неработающем двигателе отжимает мембрану второй ступени вверх, помогая ей удерживать клапан закрытым.

При открытом магистральном вентиле газ через фильтр поступает в камеру первой ступени. Как только давление в камере достигает 0,12...0,15 МПа, мембрана под действием давления газа, преодолевая сопротивление пружины, переместится вниз и при помощи коленчатого рычага закроет клапан. Поступление газа в камеру первой ступени прекращается. В камеру второй ступени газ поступать не будет, так как мембрана и разгрузочное устройство удерживают клапан второй ступени закрытым.

В момент пуска и во время работы двигателя на средних нагрузках разрежение во впускном трубопроводе передается по трубке в полость дозирующе-экономайзерного и разгрузочного устройств. Его мембрана прогибается вниз, сжимает коническую пружину и освобождает мембрану второй ступени. Упругости пружины диафрагмы второй ступени недостаточно для удержания клапана в закрытом положении и он открывается под действием разрежения под дросселем и давления газа, поступающего из камеры первой ступени.

При малой частоте вращения коленчатого вала холостого хода газ по отдельной трубке холостого хода поступает за дроссельные заслонки смесителя через круглые и прямоугольные отверстия; обратный клапан смесителя закрыт. На полных нагрузках через дозатор по резиновому шлангу большого диаметра и открытый обратный клапан смесителя газ поступает к форсункам смесителя. Дополнительная подача газа обеспечивается открытием клапана дозирующе-экономайзерного устройства.

Газовый смеситель служит для приготовления газовоздушной смеси в газобаллонных автомобилях.

Смеситель имеет исполнительный механизм ограничителя частоты вращения коленчатого вала, подобный установленному на карбюраторе.

Бензиновый карбюратор. Для маневрирования в гараже и передвижения на короткое расстояние (в случаях отсутствия газа или неисправности газового оборудования, которую нельзя устранить в дорожных условиях) допускается кратковременная работа двигателя на бензовоздушной смеси. Для этой цели совместно с газовым смесителем устанавливают карбюратор с сетчатыми пламегасителями.

Запрещается переводить работу двигателя с одного вида топлива на другой при его работе, так как это может привести к повреждению диафрагмы газового редуктора.

Баллон для сжиженного газа и его арматура. Сжиженный газ помещается в стальном сварном баллоне. Газ в баллоне частично находится в жидком состоянии, а частично в газообразном и рассчитан на рабочее давление до 1,6 МПа. На баллоне имеются предохранительный клапан, наполнительный вентиль, расходный паровой и жидкостный вентили, вентиль контроля наполнения. Кроме того, на баллоне установлен датчик указателя уровня сжиженного газа. Вместимость газового баллона автомобилей ГАЗ-53-07 составляет 170 л.

Паровой, жидкостный и наполнительный вентили имеют уплотнительную диафрагму. Вентиль контроля наполнения подобной уплотнительной диафрагмы не имеет.


В газовых двигателях в качестве топлива используются газы природного или промышленного происхождения. Природные (сжимаемые) добываются из скважин из недр земли или вместе с добычей нефти. К промышленным (сжижаемым) газам относятся газы, получаемые на предприятиях нефтеперерабатывающей промышленности. К ним относятся этан, пропан, бутан и др. Наибольшее распространение в газовых двигателях получило применение сжиженного бутана.

В систему газового оборудования автомобиля, работающего на сжиженном газе, входят баллоны, соединенные трубками, вентили, газовый редуктор, фильтр газового редуктора, электромагнитный клапан пусковой системы, газовый смеситель.

Сжиженный нефтяной газ содержится в баллоне 9 (рис. 3.9), размещенном под платформой автомобиля. В передней стенке баллона ввернуты расходные вентили, через которые газ, проходя скоростной клапан, поступает к тройнику. От тройника газ по шлангу подается к электромагнитному клапану 7, имеющему фильтр со сменным элементом и закрытому алюминиевым колпаком.

Рис. 3.9. Система газового оборудования автомобиля, работающего на

Сжиженном газе:

1 - газовый редуктор; 2 - электромагнитный клапан пусковой системы; 3 - Фильтр газового редуктора; 4 - Трубопровод от клапана пусковой системы к смесителю; 5 - испаритель; 6 - шланг высокого давления от электромагнитного клапана к испарителю; 7 - электромагнитный клапан; 8 И 12 - Трубопроводы; 9 - Баллон сжиженного газа; 10 - Крестовина; /1 - скоростной клапан; 13 - Смеситель; 14 - Трубопровод от редуктора к системе холостого хода смесителя; 15 - Впускной трубопровод; 16 - газовый смеситель; 17 - Трубопровод от испарителя к газовому редуктору; 18 - Трубопровод от редуктора к смесителю; 19 - шланг от редуктора к впускному трубопроводу; 20 - Трубопровод от газового редуктора к электромагнитному клапану пусковой системы

При включении зажигания и выключателя электромагнитного клапана газ направляется по шлангу высокого давления в испаритель 5, установленный на впускном трубопроводе двигателя. Из испарителя газ поступает в двухступенчатый редуктор 7, где его давление снижается. На входе в редуктор встроен газовый фильтр 3 Со сменным фильтрующим элементом, откуда газ попадает в первую ступень, где редуцируется, а затем подается во вторую ступень. Из полости второй ступени редуктора газ поступает в дози-рующе-экономайзерное устройство, которое подает необходимое количество газа в смеситель 13.

Пусковая система включает в себя электромагнитный пусковой клапан с дозирующим жиклером, трубопроводы, выключатель клапана. При пуске холодного двигателя после включения пускового клапана газ из первой ступени редуктора под давлением поступает в смеситель. Работа топливной системы контролируется манометром, установленным в кабине. Давление в первой ступени редуктора должно быть в пределах 0,16...0,18 МПа.

Газовый баллон. Баллон предназначен для хранения газа в жидком состоянии и рассчитан на рабочее давление 1,6 МПа. На заводе-изготовителе баллон подвергают соответствующим испытаниям и делают отметки о них в бирке баллона. Комплект арматуры баллона состоит из наполнительного вентиля, двух расходных вентилей, контрольного вентиля максимального наполнения баллона, предохранительного клапана, датчика указателя уровня сжиженного газа и сливной пробки.

Наполнительный вентиль. Этот вентиль предназначен для заправки баллона газом. В корпус вентиля ввернуто седло, к которому постоянно прижимается клапан с уплотнителем. Заправочное отверстие в корпусе закрывается пробкой. Обратный клапан предотвращает выход газа из баллона в случае отсоединения заправочного шланга.

Расходный вентиль. Вентиль предназначен для отбора газа из баллона. Из верхнего вентиля газ поступает в систему в газообразном состоянии, а из нижнего - в сжиженном. При вращении маховика вентиля по часовой стрелке клапан перекрывает отверстие в седле корпуса вентиля.

Скоростной клапан. В случае аварийного разрыва трубопроводов необходимо ограничить выход газа, что повышает пожарную безопасность автомобиля. Для этого предназначен скоростной клапан. После открытия расходных вентилей плунжер под давлением газа в баллоне перемещается и закрывает отверстие для прохода газа в корпусе клапана. В систему питания газ поступает только через отверстие в плунжере, которое имеет диаметр 0,13...0,19 мм. После выравнивания давления, что происходит через 2...3 мин, плунжер перемещается под действием пружины и открывает отверстие в корпусе клапана. Газ начинает поступать в систему питания в необходимом количестве. В случае разрыва трубопроводов системы питания клапан под действием давления в баллоне закрывается, и газ выходит в атмосферу только через небольшое отверстие в плунжере, что позволяет принять необходимые противопожарные меры.

Контрольный вентиль. Предназначен для определения момента максимального наполнения баллона. Перед заправкой баллона на штуцер контрольного вентиля следует навернуть наконечник шланга со смотровым устройством. Другой конец шланга отводится в специальную емкость, имеющуюся на газонаполнительной станции. В процессе наполнения баллона контрольный вентиль открывается, и через смотровое устройство определяется момент заполнения сжиженным газом.

Предохранительный клапан. Клапан предназначен для предохранения баллона от высокого давления и отрегулирован на начало открытия при давлении 1,68 МПа и полное открытие при давлении 1,8 МПа, при этом зазор между ним и седлом должен быть

Не менее 2,6 мм. Если давление превышает приведенные значения, клапан с уплотнителем отжимается от седла, преодолевая усилие пружины, и открывает отверстие для выхода газа из баллона.

Электромагнитный клапан. Для очистки газа, поступающего в редуктор, и отключения газовой магистрали при остановке двигателя предназначен электромагнитный клапан, состоящий из корпуса, электромагнита с клапаном, войлочного фильтрующего элемента, алюминиевого колпака, стяжного болта, подводящего и отводящего газ штуцеров. Уплотнение стыка между корпусом и колпаком фильтра осуществляется резиновым кольцом. Стык между колпаком фильтра и головкой стяжного болта уплотнен медной прокладкой.

При выключенном зажигании клапан под действием пружины закрыт и не пропускает газ в редуктор. При включении зажигания клапан открывается, и очищенный от механических примесей газ поступает в испаритель, редуктор и далее в смеситель.

Испаритель. Для преобразования газового топлива из жидкой фазы в газообразную служит испаритель. Испаритель разборной конструкции: его алюминиевый корпус состоит из двух частей. Через каналы в плоскости разъема проходит газ. Такая конструкция позволяет очищать газовые каналы от отложений.

Газовый редуктор. Для снижения давления газа до значения, близкого к атмосферному, используют газовый редуктор (рис. 3.10, А). Редуктор - двухступенчатый, мембранно-рычажного типа. Принципы действия первой и второй ступеней редуктора одинаковы. Каждая ступень имеет клапан, мембрану, рычаг, шарнирно связывающий клапан с мембраной, и пружину с регулировочной гайкой.

Редуктор имеет также дополнительные устройства мембранно-пружинного типа, которые обеспечивают автоматическое перекрытие поступления газа к смесителю при выключении двигателя и дозирование количества газа в соответствии с нагрузочным режимом работы двигателя.

При неработающем двигателе и закрытом расходном вентиле (при выработанном газе) давление в полости первой ступени равно атмосферному, и клапан 3 Первой ступени находится в открытом положении под действием усилия пружины 10. При открытом вентиле и включенном электромагнитном клапане газ поступает в полость первой ступени редуктора, пройдя предварительно через вентиль и электромагнитный клапан. Давление газа действует на мембрану 8, Которая, преодолевая усилие пружины 10, Прогибается и при достижении заданного давления через рычаг 12 Закрывает клапан 3.

Давление газа в полости регулируется изменением при помощи гайки 11 Усилия пружины 10, Действующей на мембрану 8, И

Устанавливается в пределах 0,16...0,18 МПа. Давление газа в первой ступени контролируется при помощи дистанционного электрического манометра, установленного в кабине, и датчика, размещенного на редукторе.

При неработающем двигателе клапан 16 Второй ступени находится в закрытом положении и плотно прижат к седлу пружиной 41 Разгрузочного устройства мембраны и пружиной 47 Мембраны, усилие от которых передается через шток 49 и Стержень 48, Рычаг 29 И толкатель 26.

При пуске двигателя под дроссельными заслонками газового смесителя создается вакуум, который по шлангам (через вакуумную полость экономайзера) передается в полость В разгрузочного устройства. Мембрана 38 ъ Результате возникновения вакуума прогибается и сжимает пружину 41 Разгрузочного устройства мембраны, тем самым разгружается клапан 16 Второй ступени. Усилие пружины 4 7 Становится недостаточным для удержания клапана 16 Второй ступени в закрытом положении, и он открывается под давлением газа в полости А первой ступени. Газ заполняет полость Б второй ступени, а затем через дозирующе-экономайзерное устройство (экономайзер) поступает в смеситель.

В режиме холостого хода расход газа незначителен, и в полости второй ступени создается избыточное давление 50...70 Па (5... 7 мм вод. ст.). По мере открытия дроссельных заслонок расход газа увеличивается, и на режимах, близких к режиму полной мощности, давление газа в полости снижается до вакуума 150...200 Па (15...20 мм вод. ст.), при этом мембрана 39 Прогибается и через систему рычагов увеличивает открытие клапана 16 Второй ступени.

Одновременно возрастают степень открытия клапана 3 Первой ступени и расход газа через него. При большом открытии дроссельных заслонок вакуум в смесительной камере понижается, что приводит к уменьшению вакуума в вакуумной полости экономайзера, и пружина 19 Открывает клапан 23, Обеспечивая подачу в смеситель дополнительного количества газа через отверстие 25 Мощностного регулирования подачи газа.

Рассмотрим подробнее, как проходит газ из полости Б редуктора через дозирующе-экономайзерное устройство (рис. 3.10, Б) В смеситель. По мере открытия дроссельных заслонок газового смесителя растет вакуум над обратным клапаном смесителя, он открывается, и газ поступает в форсунки смесителя.

При работе двигателя с прикрытыми дроссельными заслонками газ из второй ступени редуктора проходит к газовому смесителю через отверстие 5

Пан 23. Газ начинает поступать дополнительно через отверстие 57 экономайзера.

Увеличение общей подачи газа приводит к обогащению газовоздушной смеси и повышению мощности двигателя. В правильно отрегулированном редукторе давление газа в полости первой ступени должно быть 0,16...0,18 МПа, а в полости второй ступени должно создаваться избыточное давление, на 80... 100 Па

(8... 10 мм вод. ст.) больше атмосферного, ход стержня Одол Жен быть не менее 7 мм.

Газовый смеситель. Приготовление газовоздушной смеси для питания двигателя происходит в газовом смесителе. Газовый смеситель - двухкамерный вертикальный, с падающим потоком топливной смеси, с параллельным открытием дроссельных заслонок и двумя горизонтальными форсунками, расположенными в узких сечениях съемных диффузоров. Как правило, газовый смеситель изготовляется на базе стандартных карбюраторов с изменением конструкции для установки газовой форсунки и присоединения газовой трубки к системе холостого хода.

Дозирование газа для главной системы осуществляется дозиру-юще-экономайзерным устройством, расположенным в газовом редукторе. Питание газом системы холостого хода комбинированное: непосредственно из газового редуктора по трубопроводу 15 (см. рис. 3.9) и из трубопровода 16 Основной подачи газа. Смеситель снабжен исполнительным мембранным механизмом пневмо-центробежного ограничителя максимальной частоты вращения коленчатого вала двигателя.

Рис. 3.10. Газовый редуктор:

А - Устройство газового редуктора; Б - Схема работы экономайзера редуктора; 1 - седло клапана первой ступени; 2 - Уплотнитель клапана; 3 И 4 - Соответственно клапан и крышка первой ступени; 5 - Направляющая клапана; б, 9 И 31 - Контргайки; 7 - регулировочный винт клапана; 8 - Мембрана первой ступени; 10 - Пружина мембраны первой ступени; /1 - регулировочная гайка; 12 - Рычаг первой ступени; 13 И 32 - Оси рычагов; 14 - Седло клапана второй ступени; 15 - Уплотнительный клапан; 16 - Клапан второй ступени; 17 - Корпус дозирующе-экономайзерного устройства; 18 - Крышка корпуса; 19 - Пружина экономайзера; 20 - Мембрана экономайзера; 21 - Винт крепления крышки; 22 - Пружина клапана экономайзера; 23 - Клапан экономайзера; 24 И 58 - Дозирующие отверстия экономичного регулирования подачи газа; 25 И 57 - дозирующие отверстия мощностного регулирования подачи газа; 26 - Толкатель клапана; 27 - Пластина с дозирующими отверстиями; 28 - Прокладки пластины; 29- Рычаг второй ступени; 30- Регулировочный винт клапана; 33 - Крышка с патрубком системы холостого хода; 34 - Винт крепления крышки; 35 - Корпус редуктора; 36 - крышка разгрузочного устройства; 37 - Крышка редуктора; 38 - Мембрана разгрузочного устройства; 39 - Мембрана второй ступени; 40 - Усилительный диск мембраны; 41 - Пружина разгрузочного устройства мембраны; 42 - Регулировочный ниппель; 43 - Контргайка ниппеля; 44 - Стопорный винт; 45 - Штифт упорной шайбы; 46 - Колпачковая крышка ниппеля; 47 - Пружина мембраны второй ступени; 48 - Стержень; 49 - Шток мембраны; 50 - Упор мембраны; 51 - Болт крепления крышки редуктора; 52 - Прокладки; 53 - Корпус газового фильтра; 54 - Фильтрующий элемент; 55 - Патрубок для соединения вакуумной полости экономайзера с впускным трубопроводом двигателя; 56 - Патрубок для передачи вакуума в вакуумную полость разгрузочного устройства; 59 - Патрубок для подвода газа в смеситель; А - полость первой ступени; Б - полость второй ступени; В - полость разгрузочного устройства; Г - полость атмосферного давления; - направление движения газа

Крышка каналов системы холостого хода вместе с прокладкой установлена на корпусе газового смесителя и закреплена четырьмя винтами. В ней размещены винты регулирования состава газовой смеси и отверстие для присоединения вакуум-корректора.

Какие газы могут служить топливом для двигателей газобаллонных автомобилей?


Топливом для двигателей газобаллонных автомобилей могут служить сжатые и сжиженные газы, хранящиеся в специальных баллонах.

Какие газы для двигателей газобаллонных автомобилей относятся к сжатым?


К сжатым газам относятся: метан; водород; окись углерода; нефтяной газ, выделяющийся из нефтяных скважин или получаемый при переработке нефти; промышленный (коксовый) газ, получаемый в коксовых печах при сухой перегонке угля или торфа. Газ, переработанный на заводе, называют синтез-газ. Сжатые газы на автомобиле хранятся в стальных баллонах под давлением 20 МПа. Ведутся работы по созданию баллонов из полимерных материалов, которые значительно легче стальных.

Какие газы для двигателей газобаллонных автомобилей относятся к сжиженным и как они хранятся?


К сжиженным газам относятся: пропан, бутан, пропилен, бутилен. Эти газы легко переходят из газообразного в жидкое состояние при нормальной температуре и низких давлениях (до 1,6 МПа). Их получают во время переработки нефтепродуктов и хранят на автомобиле в стальном баллоне под давлением 1,6 МПа. В таких газах содержится бо́льшая концентрация тепловой энергии в единице объема, чем в сжатых газах. Поэтому для пробега автомобиля 250-300 км требуется всего один баллон с жидким газом, тогда как для такого же пробега автомобиля на сжатых газах требуется 5 или 8 баллонов. Кроме того, сжиженный газ хранится при невысоком давлении, что повышает безопасность труда.

В настоящее время выпускаются автомобили ЗИЛ-138, ГАЗ-53-07, ГАЗ-52-07; ГАЗ-24-07 «Волга» с газовой аппаратурой для работы на сжиженных газах. Двигатели этих автомобилей не претерпели существенных переделок. В них только повышена степень сжатия до 8,5, что позволяет им развивать такую же мощность, как и при работе на бензине. Кроме того, на этих автомобилях сохранена топливная аппаратура для кратковременной работы на бензине. В соответствии с ГОСТ 20448-75 на таких автомобилях используется смесь сжиженного газа, состоящая из пропана и бутана. Зимой в этой смеси пропана должно быть не менее 75% и не более 20% бутана, летом – соответственно 34 и 60%. Это объясняется тем, что пропан лучше испаряется, обеспечивая надежный пуск двигателя. Кроме пропана и бутана, в состав сжиженного газа входят метан, этан, этилен, пропилен, бутилен, пентан и другие, общее содержание которых в смеси составляет 5-6%. Пропановые фракции (пропан, пропилен) обеспечивают необходимое давление в баллоне. Бутан наиболее калорийный и легкосжижаемый газ. Октановое число у пропана – 120, у бутана – 93, что позволяет повысить степень сжатия в двигателе и получить большую мощность. Газ не должен содержать механических примесей, водорастворимых кислот, щелочей, смол и других вредных примесей. Сжиженные газы имеют большой коэффициент объемного расширения. Поэтому баллон следует наполнять газом не более чем на 90% его объема. Остальные 10% составляет объем паровой подушки, без которой даже незначительное повышение температуры газа приводит к резкому увеличению давления в баллоне.

Перевод автомобилей на газовое топливо позволяет экономить жидкое топливо. Кроме того, оно более полно сгорает в цилиндрах двигателя и меньше выделяется токсических веществ в атмосферу. В таком двигателе нет конденсации топлива и не смывается масляная пленка со стенок цилиндров, что повышает срок службы двигателя на 20-25%.

Однако работа двигателя на газу требует соблюдения специальных правил безопасности, так как в местах неплотного соединения газ выходит и образует снежный кристаллический налет (иней), при соприкосновении с которым может произойти обмораживание рук и других частей тела. Прорвавшийся газ скапливается в углублениях подкапотного пространства и, смешиваясь с воздухом, образует взрывоопасную смесь. Газ не содержит кислорода, поэтому при его вдыхании может произойти отравление (удушье).

Как устроена газобаллонная установка для работы на сжиженном газе?


Газобаллонная установка автомобиля ГАЗ-53-07 (рис.73) состоит из баллона 1 для хранения сжиженного газа; испарителя газа 16; двухступенчатого газового редуктора 14 с дозирующе-экономайзерным устройством; смесителя 10, в котором газ смешивается с воздухом в пропорции 1: 1 и образует газовоздушную горючую смесь; магистрального вентиля 20, открывающего поступление газа в испаритель; манометра 21 высокого давления, показывающего давление газа в баллоне, манометра 6 низкого давления, показывающего давление газа в камере первой ступени газового редуктора; фильтра 15 для очистки газа; трубопровода 24 высокого давления, подводящего газ из баллона в газовый редуктор; трубопровода низкого давления 12 для подвода газа из камеры второй ступени газового редуктора в смеситель; трубопровода 11 вакуумного разгружателя и трубопровода 7 для подвода в смеситель газа при работе двигателя с малой частотой вращения коленчатого вала на холостом ходу.

Рис.73. Газобаллонная установка для питания двигателя сжиженным газом.

На баллоне установлены заправочный вентиль 3 для наполнения баллона жидким газом, контрольный вентиль 2 для отвода паровой фазы газа в момент наполнения баллона, предохранительный клапан 22, открывающий выход газа в атмосферу в случае чрезмерного повышения его давления в баллоне, указатель 4 уровня газа в баллоне, расходные вентили 5 жидкой и 23 парообразной фаз газа. На испарители установлен трубопровод 17 для подвода горячей охлаждающей жидкости из системы охлаждения двигателя и 18 – для отвода этой жидкости в систему охлаждения, кран 19 для слива отстоя или воды в холодное время года. Для питания двигателя 8 жидким топливом (бензином) имеется топливный бачок 13 емкостью 10 л и карбюратор 9, соединенные между собой топливопроводом.

Как работает газобаллонная установка сжиженного газа?


Работает газобаллонная установка так. При пуске двигателя открывают вентиль 23 (рис.73) на баллоне и магистральный вентиль 20 в кабине водителя. Газ из баллона под давлением 1,6 МПа по трубопроводу 24 поступает в испаритель 16, где испаряется и через фильтр 15 поступает в двухступенчатый редуктор 14, где его давление снижается до 0,12-0,15 МПа в камере первой ступени, а затем до 0,1 МПа в камере второй ступени. Газ из камеры второй ступени через дозирующе-экономайзерное устройство по трубопроводу 12 поступает в смеситель 10, где, смешиваясь с воздухом в пропорции 1: 1, образует газовоздушную горючую смесь, которая поступает в цилиндры двигателя.

После пуска и прогрева двигателя вентиль 23 закрывают, а открывают вентиль 5 жидкой фазы газа. Жидкий газ поступает по тем же трубопроводам в испаритель 16, где преобразуется в газообразное состояние и далее поступает в редуктор. При последующем пуске горячего двигателя открывают вентиль 5, так как жидкость в рубашке охлаждения еще горячая и подогревает газ в испарителе.

Во время работы двигателя с малой частотой вращения коленчатого вала на холостом ходу газ к смесителю поступает по трубопроводу 7. Для обеспечения нормальной работы редуктора его трубопровод 11 вакуумного разгружателя все время соединен с впускной полостью смесителя. В холодное время года газ плохо испаряется, что затрудняет пуск двигателя. В этом случае его пускают на бензине, прогревают и переводят на газ. Для этого необходимо перекрыть бензокраник на бачке и полностью выработать бензин из карбюратора и топливопроводов, а затем пустить двигатель от газобаллонной установки. Запрещается одновременная работа двигателя на бензине и газе. На бензине можно доехать до ближайшей газонаполнительной станции, если в пути израсходовано газовое топливо. Однако длительная работа на бензине запрещается.

В чем отличие газобаллонной установки для сжатого газа?


Газобаллонная установка для сжатого газа имеет такие же приборы, что и для сжиженного газа. Однако газ в ней хранится в сжатом состоянии в нескольких стальных баллонах под давлением 20 МПа, соединенных между собой стальными трубопроводами. Работа такая же, как и на сжиженном газе.

Устройство приборов газобаллонной установки

Как устроен баллон для сжиженного газа?


Баллон для сжиженного газа изготовляется из стали, рассчитан на рабочее давление 1,6 МПа и пригоден для наполнения и хранения газа при температуре до 45°С. Баллоны периодически подвергаются гидравлическому испытанию под давлением 2,4 МПа и пневматическому – под давлением воздуха 1,6 МПа. Выдержавшие испытания клеймят. На переднем днище ставят клеймо с указанием завода-изготовителя, порядкового номера, массы в килограммах, даты (месяц и год) изготовления и последнего испытания, рабочего и испытательного давления, емкости в литрах, а также клеймо ОТК завода-изготовителя. Повторные испытания проводят один раз в два года органы Гостехнадзора. Годные баллоны окрашивают в красный цвет.

Как устроен и работает испаритель газа?


Испаритель сжиженного газа служит для преобразования жидкой фазы газа в газообразную. Он состоит из разъемного корпуса, в котором выполнены каналы для прохода газа. Каналы омываются горячей жидкостью из системы охлаждения, что и приводит к испарению газа. Разборная конструкция испарителя позволяет очищать каналы от отложений и осадков.

Как устроен и работает фильтр для очистки газа?


В фильтре газ очищается от механических примесей и воды, которые, попав в редуктор, могли бы вызвать неплотное закрытие клапанов, а вода в холодное время года, замерзая, закупорила бы газопроводы, нарушив работу системы питания. Фильтр состоит из корпуса, в котором установлен фильтрующий элемент, изготовленный из мелкой латунной сетки, свернутой рулоном, и пакета войлочных колец. Газ последовательно проходит через сетку и войлок, очищается и поступает в газовый редуктор.

Какое назначение и устройство газового двухступенчатого редуктора?


Газовый двухступенчатый редуктор служит для снижения давления газа с 1,6 МПа до 0,1 МПа и подачи его в смеситель, а также регулировки его количества в зависимости от нагрузки и частоты вращения коленчатого вала. Кроме того, редуктор обеспечивает перекрытие газовой магистрали при неработающем двигателе. Он состоит (рис.74) из алюминиевого корпуса 24 с внутренней перегородкой, разделяющей его на две камеры: первой А и второй Б ступеней. Камера первой ступени снизу закрывается крышкой 4. Между корпусом и крышкой зажата гибкая мембрана 5, с которой соединен двуплечий рычаг 8, установленный шарнирно на оси. С рычагом соединен стержень, в котором запрессован клапан 3 первой ступени, который в заданные моменты плотно прижимается к седлу, установленному в газоподводящем штуцере 1. К штуцеру крепится газоподводящий трубопровод с фильтром 39. Под мембраной установлена пружина 6, стремящаяся удерживать ее в верхнем положении, а следовательно, и клапан первой ступени в открытом состоянии. Упругость пружины можно изменять вращением регулировочной гайки 7. Поддиафрагменная полость сообщается с атмосферой. В камеру первой ступени ввернут штуцер 2 для манометра и предохранительный клапан 38. Диафрагма 36 камеры второй ступени зажата между крышкой 37 и распорным кольцом, прикрепляемым к корпусу. Диафрагма пружиной 33 отжимается кверху, действуя через опорную шайбу на стержень 34. Пружина установлена в направляющей 32, вращением которой можно изменять ее упругость. Нижний конец стержня диафрагмы соединен с двуплечим рычагом 29, установленным шарнирно на оси в приливе корпуса камеры второй ступени. Другой конец рычага через регулировочный винт 27 с контргайкой 28 прижимает клапан 9 к седлу, препятствуя поступлению газа из камеры первой ступени во вторую.


Рис.74. Газовый двухступенчатый редуктор.

Над полостью второй ступени установлен вакуумный разгружатель 31 с пружиной 30 и упорами 35. Пружина 30 через упоры 35 при неработающем двигателе воздействует на диафрагму 36, поднимая ее. Полость В вакуумного разгружателя трубопроводом через штуцер 18 и 13 сообщается с впускным трубопроводом двигателя. Поэтому при работающем двигателе разрежение передается в камеру вакуумного разгружателя и пружина 30 перестает воздействовать на диафрагму камеры второй ступени, позволяя ей прогибаться и пропускать газ из камеры первой ступени во вторую.

В нижней части камеры второй ступени имеется дозатор-экономайзер 22 с крышкой 14, который регулирует количество газа, поступающего к смесителю, то есть состав горючей смеси. Между корпусом экономайзера и его крышкой установлена диафрагма 16, нагруженная пружиной 15. С диафрагмой через шток соединен клапан 11 с пружиной 12. В корпусе экономайзера выполнены отверстия 21 и 25 постоянного сечения. Сечение отверстия 17 можно изменять вращением регулировочного винта 19 и регулировать таким путем максимальную мощность двигателя. Сечение отверстия 20 регулируется автоматически с помощью клапана-регулятора 10, изменяя количество газа, проходящего к смесителю через патрубок 23. Камера второй ступени закрывается крышкой 26.

Как работает газовый двухступенчатый редуктор?


Работает редуктор так. При закрытых расходных и магистральном вентилях газ в редуктор не поступает. Клапан3 (рис.74) камеры первой ступени открыт, второй – закрыт. Двигатель не работает. Во время открытия расходного и магистрального вентилей газ через открытый клапан 3 поступает в камеру первой ступени. Когда давление в камере достигнет 0,12-0,18 МПа, диафрагма 5 прогнется, сжимая пружину 6, и через двуплечий рычаг 8 закроет клапан. Клапан 9 второй ступени все еще закрыт.

При вращении коленчатого вала разрежение из цилиндров передается в смеситель и через обратный клапан и дозирующе-экономайзерное устройство в камеру второй ступени. Одновременно разрежение передается и в вакуумный разгружатель и он перестает воздействовать на диафрагму 36. Следовательно, под диафрагмой камеры второй ступени разрежение, а над ней атмосферное давление. Из-за разности давлений диафрагма прогибается и штоком воздействует на двуплечий рычаг 29, который, поворачиваясь на оси, открывает клапан камеры второй ступени и пропускает газ из камеры первой ступени во вторую. Газ из камеры второй ступени через дозирующе-экономайзерное устройство по патрубку 23 поступает в смеситель, где смешивается с воздухом, образует газовоздушную горючую смесь, которая и поступает в цилиндры двигателя. Расход газа из камеры первой ступени вызывает снижение давления в ней, пружина 6 поднимает диафрагму 5 и снова открывается клапан первой ступени, пропуская газ в камеру первой ступени, а из нее во вторую, обеспечивая бесперебойную работу двигателя. Количество газа, поступающего в смеситель, регулируют поворотом клапана-регулятора 10 в зависимости от теплотворной способности газа. Во время работы двигателя с малой частотой вращения коленчатого вала на холостом ходу дроссельная заслонка в смесителе закрыта и разрежение в камеру второй ступени передается по трубопроводу холостого хода, обеспечивая работу двигателя. При этом газ поступает в поддроссельную полость смесителя по трубопроводу 7 (см. рис.73).

Какое назначение предохранительного клапана в редукторе?


Предохранительный клапан в редукторе предотвращает повреждение диафрагмы камеры первой ступени вследствие повышенного давления в ней из-за неполного закрытия клапана первой ступени. Пружина предохранительного клапана отрегулирована на давление 0,45 МПа. Если давление в камере превысит эту величину, то клапан откроется и выпустит избыточный газ в атмосферу.

Как устроен и работает смеситель газа?


Смеситель газа двигателя автомобиля ГАЗ-53-07 состоит из двух смесительных камер, работающих параллельно. В каждой из них (рис.75) установлен диффузор 5, в горловину которого выведена газовая форсунка 4, соединенная через газоподводящий патрубок 1 и обратный клапан 2 с газовым редуктором.


Рис.75. Смеситель газа.

В нижней части смесителя смонтирована дроссельная заслонка 11, управление которой осуществляется водителем из кабины автомобиля через систему тяг, соединенных с педалью газа, а в верхней части – воздушная заслонка 3, управление которой производится кнопкой, установленной на панели кабины автомобиля. Для работы двигателя с малой частотой вращения коленчатого вала на холостом ходу предусмотрены газоподводящий патрубок 7, соединенный шлангом с редуктором, и два выходных отверстия 6 и 10, сечения которых можно изменять с помощью регулировочных винтов 8 и 9. Смеситель крепится к впускному трубопроводу двигателя через специальную проставку, к которой прикреплен карбюратор.

Работает смеситель так. При открытых расходном и магистральном вентилях газ поступает в редуктор и по патрубку 1 через обратный клапан 2 – в форсунку 4 и в смесительную камеру. Сюда же устремляется воздух, проходящий через открытую воздушную заслонку. В смесительной камере газ смешивается с воздухом в соотношении 1: 1 и образует газовоздушную горючую смесь, которая через открытую дроссельную заслонку поступает в цилиндры, обеспечивая работу двигателя. С увеличением открытия дроссельной заслонки увеличивается и количество газовоздушной смеси, поступающей в цилиндры двигателя, возрастает частота вращения коленчатого вала и мощность двигателя. При закрытой дроссельной заслонке разрежение по каналу 10 и штуцеру 7 передается в редуктор и под дроссельную заслонку мимо газоподводяшего патрубка 1 и форсунки 4. Сюда же подмешивается воздух, проходящий через щель между дроссельной заслонкой и отверстием 6, образуется газовоздушная горючая смесь, которая поступает в цилиндры, обеспечивая работу двигателя с малой частотой вращения коленчатого вала на холостом ходу. С увеличением открытия дроссельной заслонки разрежение передается на канал 6 и из него также поступает газ, что обеспечивает плавный переход работы двигателя с малых нагрузок на средние. Воздушную заслонку 3 прикрывают только во время пуска холодного двигателя и то на самое короткое время, так как газовоздушная смесь быстро переобогащается, потому что газ смешивается с воздухом в пропорции 1: 1. Во все остальное время работы двигателя она должна оставаться в открытом положении.

Как устроены соединительные газотрубопроводы?


Газотрубопроводы, соединяющие баллон с редуктором (высокого давления), изготавливают из стальных или медных трубок диаметром 10-12 мм с толщиной стенок 1 мм. Соединяют их между собой и с приборами при помощи ниппельных соединений. Газопроводы низкого давления (от редуктора до смесителя) изготавливают из тонкостенных стальных труб и газостойких резиновых шлангов большого сечения. Соединяют их с приборами стяжными хомутами.

Какая последовательность пуска двигателя при питании его от газобаллонной установки сжиженного газа?


Перед пуском двигателя проверяют герметичность соединений газопроводов, наличие газа в баллоне, исправность и надежность всех приборов, механизмов и систем. Затем открывают расходный вентиль паровой фазы газа и магистральный. Легким нажатием на шток камеры второй ступени наполняют ее газом и включают зажигание. Пустив двигатель, его прогревают и закрывают вентиль паровой фазы, а открывают жидкой фазы газа. Длительная работа прогретого двигателя на газе паровой фазы не рекомендуется, так как в этом случае интенсивно расходуются легко испаряющиеся фракции газа, что ведет к снижению температуры остальных фракций, баллон покрывается инеем, ухудшается теплообмен и последующий пуск холодного двигателя.

Как останавливают двигатель, работающий на жидком газе?


Для кратковременной остановки двигателя, работающего на жидком газе, достаточно выключить зажигание. При этом клапан второй ступени перекроет поступление газа из камеры первой ступени во вторую. Во время продолжительной остановки закрывают магистральный вентиль и вырабатывают газ из редуктора до остановки двигателя, после чего выключают зажигание. Перед длительной стоянкой (на ночь, смену) закрывают расходные вентили жидкой и паровой фаз газа и вырабатывают газ до остановки двигателя. Затем закрывают магистральный вентиль и выключают зажигание.

Как перевести работу двигателя с газа на бензин?


Для этого необходимо закрыть расходные вентили жидкой и паровой фаз газа и выработать газ до полной остановки двигателя. Закрыть магистральный вентиль. Открыть топливный кран и наполнить бензином поплавковую камеру карбюратора. Открыть выходное отверстие (заглушку) карбюратора и соединить тягу привода с рычагом дроссельной заслонки карбюратора. Закрыть воздушную заслонку смесителя и пустить двигатель обычным способом. Переводят двигатель с бензина на газ в обратном порядке.

Какие неисправности могут возникнуть в газобаллонной установке?


К наиболее частым неисправностям в газобаллонной установке относятся: трещины трубопроводов и шлангов, приводящие к утечке газа; неплотное закрытие вентилей и клапанов; засорение газового фильтра; нарушение регулировки газового редуктора и смесителя.

Образовавшиеся трещины на трубопроводах запаивают или заменяют их новыми; неисправные вентили снимают, разбирают и протирают, а при необходимости заменяют неисправные детали исправными; редуктор и смеситель проверяют, заменяют неисправные детали и регулируют; фильтр промывают в ацетоне и продувают сжатым воздухом.

Какие правила безопасности следует соблюдать на газобаллонных автомобилях?


Во время работы на газобаллонном автомобиле необходимо строго следить за герметичностью соединений газопроводов и приборов. Подозреваемые места утечки газа проверяют на слух по шипению выходящего газа или смачиванием этих мест раствором мыльной воды. Выявленные неисправности немедленно устраняют.

Нельзя соприкасаться открытыми участками тела с выходящими газами, так как это может привести к обмораживанию. Следует помнить, что вдыхание газа может вызвать удушье человека. Запрещается ставить газобаллонный автомобиль в закрытое помещение, если на нем обнаружена утечка газа. Перед пуском двигателя, после длительной стоянки, нужно поднять капот и проветрить подкапотное пространство, так как там может скопиться взрывоопасная горючая смесь. Не допускается проверка утечки газа открытым пламенем, прогрев двигателя паяльной лампой, остановка возле костров, кузниц и других источников открытого огня.

Источник информации Сайт: http://avtomobil-1.ru/

1. Топливо

В качестве топлива для газобаллонных автомобилей применяют-ся сжатые и сжиженные горючие газы, имеющие достаточно высокую теплотворность и высокое октановое число.

Газовоздушная горючая смесь сгорает более полно, в результате чего отработавшие газы со-держат меньше вредных примесей и меньше засоряется окружаю-щая среда. Наибольшее распространение в качестве топлива для газобаллонных автомобилей получили сжиженные газы — главным образом бутано-пропановые смеси. Такие смеси получают на нефтепе-рерабатывающих заводах в качестве побочного продукта.

В среде окружающего воздуха бутано-пропановая смесь находит-ся в парообразном состоянии. При сравнительно небольшом повыше-нии давления {до 16 кгс/см2) и обычной температуре бутано-пропановая смесь переходит в жидкое состояние и в таком виде хранится в стальных баллонах.

При работе двигателя на сжиженном газе помимо уменьшения вредных примесей в отработавших газах уменьшается разжижение смазки, нагарообразование и износ деталей при пуске холодного двига-теля.

К недостаткам газобаллонных автомобилей следует отнести умень-шенную грузоподъемность (за счет массы газобаллонной установки), а также повышение "пожароопасности и усложнение системы питания.

2. Газобаллонная установка

Газобаллонная установка для сжиженных газов (рис. 56) состоит из баллона с арматурой, вентилей, испарителя, редуктора и карбю-ратора-смесителя.

Газ из баллона по трубкам через вентили, испаритель и фильтр поступает к редуктору, снижающему его давление до рабочего, и да-лее в карбюратор-смеситель. Газовоздушная смесь из карбюратора-смесителя поступает в цилиндры двигателя.

Баллон Для сжиженного газа делают сварным из листовой стали, на нем устанавливаются расходные вентили для пара и жидкого газа, указатель уровня жидкого газа, предохранительный клапан, наполнительный вентиль и вентиль для контроля заполнения баллона жид-ким газом. Баллон заполняется жидким газом на 90% объема с тем, чтобы над поверхностью жидкого газа была паровая подушка.

Вентили имеют одинаковое устройство и отличаются друг от друга только количеством и расположением штуцеров, к которым присо-единяются трубки.

Вентиль состоит из корпуса, клапана, диафрагмы, зажимной и упорной гаек, штока с резьбой и маховичка. Диафрагма изолирует при-вод клапана от полости, где он помещен; в противном случае при от-крытом клапане газ сможет проникнуть наружу через неплотно при-легающую резьбу штока.

Испаритель служит для испарения жидкого газа и располагается из выпускном трубопроводе или глушителе.

Рис. 56. Схема газобаллонной установки для сжиженного газа

Редуктор (рис. 57) понижает давление сжиженного газа до рабо-чего и препятствует поступлению газа к смесителю при неработаю-щем двигателе. Двухступенчатые редукторы мембранно-рычажного типа имеют две камеры. В первой давление газа снижается до 2,5-»—3,0 кгс/см8, во второй оно несколько выше атмосферного (на 10— 12 мм водяного столба). Камеры сообщаются между собой отверсти-ем с клапаном. В камере первой ступени имеется резинотканевая диафрагма, пружина, коленчатый рычаг» клапан, штуцер с фильтром, предохранительный клапан, крышка и регулировочная гайка. Ка-мера второй ступени подобна по устройству камере первой ступени, но у нее отсутствует штуцер с фильтром и предохранительный клапан,

А дополнительно установлены вакуумный разгружатель, дозирующее устройство и обратный клапан.

При закрытом магистральном вентиле газ к редуктору не посту-пает, пружина камеры первой ступени давит на диафрагму и прогиба-ет ее внутрь (рис. 57, а). Прогнутая диафрагма заставляет коленчатый рычаг держать клапан первой ступени открытым. В камере второй сту-пени пружина отводит диафрагму вверх и клапан закрыт. Пружина вакуумного разгружателя при неработающем двигателе отжимает мембрану второй ступени вверх, помогая ей удерживать клапан за-крытым.

При открытом магистральном вентиле газ через фильтр поступает в камеру первой ступени. Как только давление в камере достигнет 2,5—3 кгс/см2, мембрана под действием давления газа, преодолевая сопротивление пружины, переместится вниз и при помощи коленча-того рычага закроет клапан. Поступление газа в камеру первой сту-пени прекратится. В камеру второй ступени газ поступать не будет, так как мембрана и вакуумный разгружатель удерживает клапан вто-рой ступени закрытым.

В момент пуска и во время работы двигателя разрежение во впуск-ном трубопроводе передается по трубке в полость вакуумного разгру-жателя (рис. 57, б). Его мембрана прогибается вниз, сжимает кониче-скую пружину и освобождает мембрану второй ступени. Упругости пружины диафрагмы второй ступени недостаточно для удержания кла-пана в закрытом положении и он открывается под действием разреже-ния пуска и давления газа, поступающего из камеры первой ступени.

Рис. 57. Схема работы двухступенчатого редуктора:

А — при закрытом магистральном вентиле; б — во время работы двигателя под нагрузкой; в — во время работы двигателя на холостом ходу

При малой частоте вращения коленчатого вала холостого хода (рис. 57, в) газ по отдельной трубке холостого хода поступает за дрос-сельную заслонку карбюратора-смесителя; обратный клапан редук-тора при этом закрыт. На средних и больших нагрузках через доза-тор и обратный клапан по резиновому шлангу большого диаметра газ поступает к форсунке карбюратора-смесителя.

Дозирующее устройство устанавливает для каждого вида газа в за-висимости от его теплотворности необходимое соотношение между газом и воздухом.

Конический винтовой дозатор состоит из корпуса с фланцем, ко-нуса, маховичка и патрубка. Отвертывая или завертывая маховичок, можно точно регулировать положение корпуса относительно его гнезда и, следовательно, проходимое сечение для газа. Винтовой до-затор служит также для отключения редуктора от двигателя при ра-бе те из бензине, что позволяет не снимать шлангов и ускоряет пере-вод работы двигателя с бензина на газ и обратно. Обратный клапан препятствует проникновению воздуха в камеру второй ступени при работе двигателя и а холостом ходу.

Карбюратор-смеситель (см. рис. 56) служит для приготовления газовоздушной смеси в газобаллонных автомобилях. В стандартные карбюраторы внесены изменения, дающие возможность установить в смесительную камеру форсунку, а за дроссельные заслонки подвести трубку для подачи газа при работе двигателя на холостом ходу.

Переоборудование карбюратора не исключает возможности рабо-ты двигателя на бензине. На автомобилях, предназначенных для ра-боты на газе, вместо карбюратора устанавливается смеситель.

Введение

В наши дни, автомобиль является самым распространённым видом транспортного средства. Если совсем недавно, буквально 10-20 лет назад дороги крупных городов были широки и свободны, а сейчас автомобилисту приходится по несколько часов стоять в пробке что бы добраться до пункта назначения. Тем не менее, с каждым днём количество автомобилей растёт, а производители то и дело пытаются внедрить новые технологии, которые превращают знакомый нам автомобиль, в умный гаджет который умеет думать и самостоятельно действовать в той или иной ситуации.

И если первые автомобили были совсем не безопасными, а иметь их могли только состоятельные люди, то теперь существуют разнообразные классы автомобилей, нацеленные на разные кошельки и потребности. Естественно, каждый человек стремится и хочет купить дорогой автомобиль, имеющий именитую родословную, качественные материалы кузова и богатое оснащение салона. Элитные автомобили имеют не только солидную внешность, но и оснащены самыми передовыми технологиями. А вот бюджетные авто получают только самые необходимые примочки, но как и все другие они выполняют своё прямое назначение - доставляют своего хозяина из пункта «А» в пункт «Б» и обратно.

Огромное количество людей уже оценили все преимущества передвижения на автомобиле и поэтому не желают расставаться с этим удобством ни на мгновение. Поэтому уже сегодня, большую популярность набирают прокаты автомобилей. Они конечно появились уже давно, но в основном данной услугой пользовались только состоятельные люди. Теперь же, аренда машины бизнес класса доступна любому человеку.

Мир не стоит на месте, а вместе с ним и не стоим на месте мы сами. Автомобили превращаются в неотъемлемую часть нашей жизни, впитывают в себя все необходимые функции для комфортной езды на дальние расстояния, умеют переводить большие грузы, могут быть незаметными в городском потоке или лететь навстречу ветру, достигая неимоверные скоростных показателей. Семейные, спортивные, внедорожники, грузовые, городские, хетчбеки, седаны, универсалы, пикапы - каким бы ни был автомобиль, он помогает нам и без него в наше время невозможно обойтись.

Система питания автомобиля с газобаллонным оборудованием

Назначение ГБО

Система питания газобаллонного автомобиля служит для хранения запаса топлива, очистки топлива и воздуха, приготовления горючей смеси, подачи ее в цилиндры двигателя и выпуска отработавших газов

Классификация ГБО

В актуальной технической литературе отсутствует единая методика классификации ГБО различных поколений, практически все монтажники ГБО руководствуются условной системой классификации газового оборудования. Условное разделение ГБО на поколения создает удобство при профессиональном общении и помогает специалистам по монтажу четко определять конструктивные особенности того или иного типа газового оборудования.

Первое поколение

Системы с вакуумным управлением и механическим дозатором газа, которые устанавливают на бензиновые карбюраторные и простые инжекторные автомобили. В первом поколении используются как вакуумные, так и электронные газовые редуктора. Без лямбда-зонда.

Описание

Это традиционные устройства со смесителем газа. Принципиальное различие вакуумного редуктора от электронного заключается в запорном элементе разгрузочной камеры: в вакуумном эту функцию выполняет вакуумная мембрана к которой подаётся разрежение от впускного коллектора:

1. двигатель работает - есть вакуум - редуктор открыт

2. двигатель заглушен - вакуума нет - редуктор закрыт

· простое, недорогое решение

· может применяться и на простых инжекторных двигателях без обратной связи

· не соответствует современным нормам безопасности

· это можно сказать «прошлый век», на котором основываются последующие поколения газового оборудования

Второе поколение

Механические системы, дополненные электронным дозирующим устройством, работающим по принципу обратной связи с датчиком содержания кислорода.

Описание

Устанавливаются на автомобили, оснащенные инжекторным двигателем, с лямбда-зондом и нейтрализатором и каталитическим нейтрализатором отработавших газов ("катализатором"). Это традиционные устройства со смесителем газа, дополнительно оснащенные дозаторами газа.

Для поддержания правильного состава газо-воздушной смеси Лямбда-контроллеры используют сигнал от штатного Лямбда-зонда автомобиля, а так же сигнал положения дроссельной заслонки и датчика оборотов двигателя, для оптимизации топливно-воздушной смеси на переходных режимах работы двигателя.

· дополнительное оснащение дозаторами газа

· гарантирует поддержание экологических требований Евро 1

· большая вероятность «хлопков»

· сокращается срок эксплуатации свечей зажигания и воздушного фильтра

· токсичность отработавших газов автомобилей, оснащенных такими системами, как правило, находится на уровне норм ЕВРО-1, которые действовали в Европе до 1996 года, и лишь в отдельных случаях приближаются к нормам ЕВРО-2

Третье поколение

На 80% схожа с ГБО 2-го поколения. Конструктивной особенностью данной установки является электронная дозировка подачи топлива.

Описание

Производится индивидуальная подача газа в отдельные цилиндры дозирующим устройством (газовым инжектором), имеющим одноуровневое управление порцией газа, который управляется электронным блоком. Газ подается во впускной коллектор с помощью механических форсунок, которые открываются за счет избыточного давления в магистрали подачи газа.

Установка ГБО третьего поколения на инжекторные автомобили отличается тем, что вместо бензоклапана для отсечения подачи бензина используется эмулятор форсунок. Когда подается газ, этот эмулятор имитирует работу бензиновых форсунок, чтобы штатный компьютер не перешел в аварийный режим. По этой же причине нужно устанавливать эмулятор лямбда-зонда.

· встроенный электронный блок питания обеспечивает нужную газовоздушную подачу

· работа осуществляется от подачи сигналов с датчиков мотора (Лямбда-зонд, RPM, TPS, MAP)

· особая система подачи газа - с помощью параллельного впрыска

· газовый мотор и ЭБУ (электронный блок управления)

· небольшая скорость реакции на изменение режима езды

· невысокая скорость реакции на корректировку смеси

· не соответствие экологическим требованиям Евро-3

Четвертое поколение

Это системы с распределенным синхронизированным впрыск газа. Это новейшие и наилучшие из известных сегодня решений в восточной Европе: отдельное управление подачей газа (форсунками газа) для каждого цилиндра, которые управляются более совершенным электронным блоком.

Описание

Газовая установка 4-го поколения отличается от предыдущих тем, что является точной копией бензинового инжектора, а именно: каждый цилиндр имеет свою форсунку, подающую рассчитанный необходимый для работы данного цилиндра впрыск газа. А работа форсунок контролируется ЭБУ. При этом ЭБУ принимает непосредственное участие в работе двигателя на ГБО, работая с множеством датчиков необходимых для корректной работы двигателя на газу.

Данный вид газового впрыска полностью исключает вероятность «хлопков», требует менее внимания к свечам зажигания и воздушному фильтру. Расход газа максимально приближен к расходу бензина, сохраняя при этом динамику автомобиля.

· функция автоматического перехода с бензина на газ, и наоборот (когда газ в баллоне закончился)

· совместима с экологическими требованиями Euro 3, а также с системами бортовой диагностики OBDІІ, EOBD

· является точной копией бензинового инжектора

· исключена вероятность «хлопков»

· ошибки при монтаже практически не возможны, так как все соединительные детали унифицированы.

Пятое поколение

Предназначено для использования в любых инжекторных автомобилях и совместимо с экологическими требованиями Евро-3, Евро-4 а так же системами бортовой диагностики OBD II, OBD III и EOBD.

Описание

В отличии от системы 4 поколения, в системах 5 поколения, газ поступает в цилиндры в жидкой фазе. Для этого в баллоне находится "газо насос", который обеспечивает циркуляцию жидкой фазы газа из баллона через рампу газовых форсунок с клапаном обратного давления обратно в баллон. Системы 5 поколения используют вычислительные мощности и топливные карты, заложенные в штатный контроллер а/м, и вносят лишь необходимые поправки для адаптации газобаллонного оборудования к бензиновой топливной карте. 5 поколение характеризует наличие отдельных электромагнитных форсунок впрыска газа в каждый цилиндр т. е. полностью аналогично бензиновой системе. Фазу и дозировку впрыска определяет штатный бензиновый контроллер а/м. Важным плюсом систем 3, 4 и 5 поколения является функция автоматического перехода с газового топлива на бензиновое.

· газ поступает в цилиндры в жидкой фазе

· отдельные электромагнитные форсунки впрыска газа в каждый цилиндр

· отсутствие потери мощности и отсутствие повышенного расхода газа

· возможность запуска двигателя на газе при любых отрицательных температурах

· высокая чувствительность к грязному газу

· низкая ремонтопригодность

· высокая сложность