Информация о новейших достижениях биологии в сми. Достижение молекулярной биологии

Подробное решение параграф § 1 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014

Вспомните!

Какие достижения современной биологии вам известны?

рентгенология

аппараты УЗИ, ЭМРТ

установление молекулярной структуры ДНК

расшифровка генома человека и других организмов

генная инженерия

3D-биопринтеры

Электронные сканирующие микроскопы

Экстракорпоральное оплодотворение и др.

Каких ученых-биологов вы знаете?

Линней, Ламарк, Дарвин, Мендель, Морган, Павлов, Пастер, Гук, Левенгук, Броун, Пурнинье, Бэр, Мечников, Мичурин, Вернадский, Ивановский, Флеминг, Тенсли, Сукачев, Четвериков, Лайль, Опарин, Шванн, Шлейден, Чаграфф, Навашин, Тимирязев, Мальпиги, Гольджи и др.

Вопросы для повторения и задания

1. Расскажите о вкладе в развитие биологии древнегреческих и древне-римских философов и врачей.

Первым учёным, создавшим научную медицинскую школу, был древнегреческий врач Гиппократ (ок. 460 - ок. 370 до н. э.). Он считал, что у каждой болезни есть естественные причины и их можно узнать, изучая строение и жизнедеятельность человеческого организма. С древних времён и по сей день врачи торжественно произносят клятву Гиппократа, обещая хранить врачебную тайну и ни при каких обстоятельствах не оставлять больного без медицинской помощи. Великий энциклопедист древности Аристотель (384-322 до н. э.). Стал одним из основателей биологии как науки, впервые обобщив биологические знания, накопленные до него человечеством. Он разработал систематику животных, определив в ней место и человеку, которого он называл «общественным животным, наделённым разумом». Многие труды Аристотеля были посвящены происхождению жизни. Древнеримский учёный и врач Клавдий Гален (ок. 130 - ок. 200), изучая строение млекопитающих, заложил основы анатомии человека. В течение следующих пятнадцати веков его труды были основным источником знаний по анатомии.

2. Охарактеризуйте особенности воззрений на живую природу в Средние века, эпоху Возрождения.

Резко возрос интерес к биологии в эпоху Великих географических открытий (XV в.). Открытие новых земель, налаживание торговых отношений между государствами расширяли сведения о животных и растениях. Ботаники и зоологи описывали множество новых, неизвестных ранее видов организмов, принадлежащих к различным царствам живой природы. Один из выдающихся людей этой эпохи - Леонардо да Винчи (1452-1519) - описал многие растения, изучал строение человеческого тела, деятельность сердца и зрительную функцию. После того как был снят церковный запрет на вскрытие человеческого тела, блестящих успехов достигла анатомия человека, что получило отражение в классическом труде Андреаса Везалия (1514-1564) «Строение человеческого тела» (рис. 1). Величайшее научное достижение - открытие кровообращения - совершил в XVII в. английский врач и биолог Уильям Гарвей (1578-1657).

3. Используя знания, полученные на уроках истории, объясните, почему в Средние века в Европе наступил период застоя во всех областях знаний.

После падения Западной Римской империи в Европе наступил застой в развитии наук и ремесла. Этому способствовали феодальные порядки, установившиеся во всех европейских странах, постоянные войны между феодалами, нашествия полудиких народов с востока, массовые эпидемии, а главное - идеологическое закабаление умов широких народных масс римско-католической церковью. В этот период римско-католическая церковь, несмотря на многие неудачи в борьбе за политическое господство, распространила свое влияние во всей Западной Европе. Имея огромную армию духовенства различных рангов, папство фактически добилось полного господства христианской римско-католической идеологии среди всех западноевропейских народов. Проповедуя смирение и покорность, оправдывая существующие феодальные порядки, римско-католическое духовенство вместе с тем жестоко преследовало все новое и прогрессивное. Естественные науки и вообще так называемое светское образование были полностью подавлены.

4. Какое изобретение XVII в. дало возможность открыть и описать клетку?

Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ - простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов.

5. Каково значение для биологической науки работ Л. Пастера и И. И. Мечникова?

Труды Луи Пастера (1822-1895) и Ильи Ильича Мечникова (1845-1916) определили появление иммунологии. В 1876 г. Пастер полностью посвятил себя иммунологии, окончательно установив специфичность возбудителей сибирской язвы, холеры, бешенства, куриной холеры и других болезней, развил представления об искусственном иммунитете, предложил метод предохранительных прививок, в частности от сибирской язвы, бешенства. Первая прививка против бешенства была сделана Пастером 6 июля 1885 г. В 1888 г. Пастер создал и возглавил научно-исследовательский институт микробиологии (Пастеровский институт), в котором работали многие известные ученые.

Мечников, обнаружив в 1882 г. явление фагоцитоза, разработал на его основе сравнительную патологию воспаления, а в дальнейшем - фагоцитарную теорию иммунитета, за что получил в 1908 г. Нобелевскую премию совместно с П. Эрлихом. Многочисленные работы Мечникова по бактериологии посвящены вопросам эпидемиологии холеры, брюшного тифа, туберкулеза и других инфекционных заболеваний. Мечников создал первую русскую школу микробиологов, иммунологов и патологов; активно участвовал в создании научно-исследовательских учреждений, разрабатывающих различные формы борьбы с инфекционными заболеваниями.

6. Перечислите основные открытия, сделанные в биологии в XX в.

В середине XX в. в биологию начали активно проникать методы и идеи других естественных наук. Достижения современной биологии открывают широкие перспективы для создания биологически активных веществ и новых лекарственных препаратов, для лечения наследственных заболеваний и осуществления селекции на клеточном уровне. В настоящее время биология стала реальной производительной силой, по развитию которой можно судить об общем уровне развития человеческого общества.

– Открытие витаминов

– Открытие пептидных связей в молекулах белков

– Изучение химической природы хлорофилла

– Описали основные ткани растений

– Открытие структуры ДНК

– Исследование фотосинтеза

– Открытие ключевого этапа в дыхании клеток - цикла трикарбоновых кислот, или цикла Кребса

– Исследование физиологии пищеварения

– Наблюдал клеточное строение тканей

– Наблюдал одноклеточных организмов, клетки животных (эритроциты)

– Открытие ядра в клетке

– Открытие аппарата Гольджи - органоида клетки, метод приготовления микроскопических препаратов нервной ткани, исследование строения нервной системы

– Установил, что одни части зародыша имеют влияние на развитие других его частей

– Сформулировал мутационную теорию

– Создание хромосомной теории наследственности

– Сформулировал закон гомологических рядов в наследственной изменчивости

– Обнаружили усиление мутационного процесса под действием радиоактивного излучения

– Открыл сложную структуру гена

– Открыл значение мутационного процесса в процессах, происходящих в популяциях, для эволюции вида

– Установил филогенетический ряд лошадиных как типовой ряд постепенных эволюционных изменений родственных видов

– Разработали теорию зародышевых листков для позвоночных

– Выдвинул теорию происхождения многоклеточных организмов от общего предка - гипотетического организма фагоцителлы

– Обосновывает наличие в прошлом предка многоклеточных - фагоцителлы и предлагает считать его живой моделью многоклеточное животное - трихоплакса

– Обосновали биологический закон «Онтогенез есть краткое повторение филогенеза»

– Утверждал, что многие органы многофункциональны; в новых условиях среды одна из второстепенных функций может стать более важной и заменить прежнюю главную функцию органа

– Выдвинул гипотезу возникновения билатеральной симметрии живых организмов

7. Назовите известные вам естественные науки, составляющие биологию. Какие из них возникли в конце XX в.?

На границах смежных дисциплин возникали новые биологические направления: вирусология, биохимия, биофизика, биогеография, молекулярная биология, космическая биология и многие другие. Широкое внедрение математики в биологию вызвало рождение биометрии. Успехи экологии, а также всё более актуальные проблемы охраны природы способствовали развитию экологического подхода в большинстве отраслей биологии. На рубеже XX и XXI вв. с огромной скоростью начала развиваться биотехнология - направление, которому, несомненно, принадлежит будущее.

Подумайте! Вспомните!

1. Проанализируйте изменения, произошедшие в науке в XVII-XVIII вв. Какие возможности они открыли перед учёными?

Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ - простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов. В XVIII в. шведский натуралист Карл Линней (1707-1778) предложил систему классификации живой природы и ввёл бинарную (двойную) номенклатуру для наименования видов. Карл Эрнст Бэр (Карл Максимович Бэр) (1792-1876), профессор Петербургской медико-хирургической академии, изучая внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи, сформулировал закон зародышевого сходства и вошёл в историю науки как основатель эмбриологии. Первым биологом, который попытался создать стройную и целостную теорию эволюции живого мира, стал французский учёный Жан Батист Ламарк (1774-1829). Палеонтологию, науку об ископаемых животных и растениях, создал французский зоолог Жорж Кювье (1769-1832). Огромную роль в понимании единства органического мира сыграла клеточная теория зоолога Теодора Шванна (1810-1882) и ботаника Маттиаса Якоба Шлейдена (1804-1881).

2. Как вы понимаете выражение «прикладная биология»?

4. Проанализируйте материал параграфа. Составьте хронологическую таблицу крупных достижений в области биологии. Какие страны в какие временные периоды были основными «поставщиками» новых идей и открытий? Сделайте вывод о связи между развитием науки и другими характеристиками государства и общества.

Страны, в которых произошли основные биологические открытия относятся к развитым и активно развивающимся странам.

5. Приведите примеры современных дисциплин, возникших на стыке биологии и других наук, не упомянутые в параграфе. Что является предметом их изучения? Попробуйте предположить, какие разделы биологии могут возникнуть в будущем.

Примеры современных дисциплин, возникших на стыке биологии и других наук: палеобиология, биомедицина, социобиология, психобиология, бионика, физиология труда, радиобиология.

Разделы биологии могут возникнуть в будущем: биопрограммирование, ИТ-медицина, биоэтика, биоинформатика, биотехнология.

6. Обобщите информацию о системе биологических наук и представьте её в виде сложной иерархической схемы. Сравните схему, созданную вами, с результатами, которые получились у ваших одноклассников. Одинаковы ли ваши схемы? Если нет, объясните, в чём их принципиальные отличия.

1) Человечество не может существовать без живой природы. Отсюда жизненно необходимо сохранять ее

2) Биология возникла в связи с решением очень важных для людей проблем.

3) Одной из них всегда было более глубокое постижение процессов в живой природе, связанных с получением пищевых продуктов, т.е. знание особенностей жизни растений и животных, их изменение под воздействием человека, способов получения надежного и все более богатого урожая.

4) Человек – продукт развития живой природы. Все процессы нашей жизнедеятельности подобны тем, которые происходят в природе. И поэтому глубокое понимание биологических процессов служит научным фундаментом медицины.

5) Появление сознания, означающее гигантский шаг вперед в самопознании материи, тоже не может быть понято без глубоких исследований живой природы, по крайней мере, в 2-х направлениях – возникновение и развитие мозга как органа мышления (до сих пор загадка мышления остается неразрешенной) и возникновение социальности, общественного образа жизни.

6) Живая природа является источником многих необходимых для человечества материалов и продуктов. Нужно знать их свойства, чтобы правильно использовать, знать, где искать их в природе, как получать.

7) Та вода, которую мы пьем, точнее - чистота этой воды, ее качество тоже определяется в первую очередь живой природой. Наши очистные сооружения лишь завершают тот огромный процесс, который незримо для нас происходит в природе: вода в почве или водоеме многократно проходит через тела мириадов беспозвоночных, фильтруется ими и, освобождаясь от органических и неорганических остатков, становится такой, какой мы знаем ее в реках, озерах и ключах.

8) Проблема качества воздуха и воды – одна из экологических проблем, а экология – биологическая дисциплина, хотя современная экология давно перестала быть только ею и включает в себя много самостоятельных разделов, зачастую принадлежащих к разным научным дисциплинам.

9) В результате освоения человеком всей поверхности планеты, развития сельского хозяйства, промышленности, вырубки лесов, загрязнения материков и океанов все большее число видов растений, грибов, животных исчезает с лица Земли. Исчезнувший вид восстановить невозможно. Он является продуктом миллионов лет эволюции и обладает уникальным генофондом.

10) В данный момент особенно быстро развиваются молекулярная биология, биотехнология и генетика.

8. Организационный проект. Выберите важное событие в истории биологии, годовщина которого приходится на текущий или следующий год. Разработайте программу вечера (конкурса, викторины), посвящённого этому событию.

Викторина:

– Разделение на группы

– Вступительное слово – описание события, историческая справка события, ученого

– Придумать название команд (по теме викторины)

– 1 раунд – простой: например, закончить предложение: Защитная реакция растений на изменение длины светового дня (листопад).

– 2 раунд – двойной: например, найди пару.

– 3 раунд – сложный: например, изобразить схему процесса, нарисовать явление.

Десять крупнейших достижений десятилетия в биологии и медицине Версия независимого эксперта

Новые высокопроизводительные методы секвенирования ДНК – «цена» генома падает

МикроРНК – о чем молчал геном

Новые высокопроизводительные методы секвенирования ДНК – «цена» генома падает

Один из основателей знаменитой фирмы «Intel» Г. Мур в свое время сформулировал эмпирический закон, который до сих пор выполняется: производительность компьютеров будет удваиваться каждые два года. Производительность секвенаторов ДНК, с помощью которых проводят расшифровку нуклеотидных последовательностей ДНК и РНК, растет даже быстрее чем по «закону Мура». Соответственно, падает стоимость чтения геномов.

Так, затраты на проведение работ по проекту «Геном человека», который завершился в 2000 г., составили 13 млрд долларов. Появившиеся позднее новые массовые технологии секвенирования были основаны на параллельном анализе множества фрагментов ДНК (сначала – в микролунках, а сейчас – в миллионах микроскопических капель). В результате, например, расшифровка генома знаменитого биолога Д. Уотсона, одного из авторов открытия структуры ДНК, которая в 2007 г. обошлась в 2 млн долларов, всего через два года «стоила» уже 100 тыс. долларов.

В 2011 г. фирма «Ion torrent», предложившая новый метод секвенирования на основе измерения концентрации ионов водорода, выделяющихся при работе ферментов ДНК-полимераз, прочитала геном самого Мура. И хотя стоимость этой работы не оглашалась, создатели новой технологии обещают, что чтение любого генома человека не должно в будущем превышать 1 тыс. долларов. А их конкуренты – создатели еще одной новой технологии, секвенирования ДНК в нанопорах, уже в нынешнем году представили прототип устройства, на котором, потратив несколько тысяч долларов, можно секвенировать геном человека за 15 минут.

Синтетическая биология и синтетическая геномика – как просто стать Богом

Информация, накопленная за полвека развития молекулярной биологии, сегодня позволяет ученым создавать живые системы, никогда не существовавшие в природе. Как оказалось, сделать это совсем нетрудно, особенно если начать с чего-то уже известного и ограничить свои притязания такими несложными организмами, как бактерии.

В наши дни в США даже проводится специальный конкурс iGEM (International Genetically Engineered Machine), в котором студенческие команды соревнуются в том, кто сможет придумать наиболее интересную модификацию обычных бактериальных штаммов, используя набор стандартных генов. Например, пересадив в широко известную кишечную палочку (Escherichia coli ) набор из одиннадцати определенных генов, можно заставить колонии этих бактерий, растущие ровным слоем на чашке Петри, стабильно менять цвет там, где на них падает освещение. В результате можно получить их своеобразные «фотографии» с разрешением, равным размеру бактерии, т. е. около 1 мкм. Создатели этой системы дали ей имя «Колироид», скрестив видовое имя бактерии и название знаменитой фирмы «Поляроид».

В этой области есть и свои мегапроекты. Так, в фирме одного из отцов геномики К. Вентера был синтезирован из отдельных нуклеотидов геном бактерии-микоплазмы, который не похож ни на один из существующих микоплазменных геномов. Эту ДНК заключили в «готовую» бактериальную оболочку убитой микоплазмы и получили работающий, т.е. живой организм с полностью синтетическим геномом.

Лекарства от старения – путь к «химическому» бессмертию?

Сколько ни пытались за тысячи лет создать панацею от старения, легендарное средство Макропулоса так и осталось недосягаемым. Но и в этом, казалось бы, фантастическом направлении появляются подвижки.

Так, в начале прошедшего десятилетия большой бум в обществе произвел ресвератрол – вещество, выделенное из кожуры ягод красного винограда. ­Сначала с его помощью удалось значительно продлить жизнь клеткам дрожжей, а потом – и многоклеточным животным, микроскопическим червям-нематодам, плодовым мушкам-дрозофилам и даже аквариумным рыбкам. Потом внимание специалистов привлек рапамицин – антибиотик, впервые выделенный из почвенных бактерий-стрептомицетов с о. Пасхи. С его помощью удалось продлить жизнь не только клеткам дрожжей, но даже лабораторным мышам, которые жили на 10-15 % дольше.

Сами по себе эти препараты вряд ли будут широко применять для продления жизни: тот же рапамицин, к примеру, подавляет иммунную систему и повышает риск инфекционных заболеваний. Однако сейчас ведутся активные исследования механизмов действия этих и подобных веществ. И если это удастся, то мечта о безопасных лекарственных средствах для продления жизни вполне может стать явью.

Использование стволовых клеток в медицине – ждем революцию

Сегодня в базе данных клинических испытаний Нацио­нальных институтов здоровья США пере­числено почти полтысячи работ с использованием стволовых клеток, находящихся на разных стадиях исследования

Однако настораживает тот факт, что первое из них, касающееся использования клеток нервной системы (олигодендроцитов) для лечения травм спинного мозга, было прервано в ноябре 2011 г. по неизвестной причине. После этого американская компания «Geron Corporation» – один из пионеров в области «стволовой» биологии, которая проводила это исследование, объявила о полном сворачивании своих работ в этой области.

Тем не менее, хочется верить, что медицинское применение стволовых клеток со всеми их волшебными возможностями не за горами.

Древняя ДНК – от неандертальца до чумной бактерии

В 1993 г. вышел фильм «Парк Юрского периода», в котором на экране гуляли монстры, воссозданные из остатков ДНК из крови динозавров, сохранившейся в желудке замурованного в янтаре комара. В тот же год один из крупнейших авторитетов в области палеогенетики, английский биохимик Т. Линдал заявил, что даже при самых благоприятных условиях из ископаемых остатков нельзя извлечь ДНК старше 1 млн лет. Скептик оказался прав – ДНК дино­завров так и осталась недоступной, однако успехи в техническом совершенствовании методов извлечения, амплификации и секвенирования более молодой ДНК, достигнутые за последнее десятилетие, впечатляют.

На сегодня полностью или частично прочитаны геномы неандертальца, недавно открытого денисовца и множества ископаемых останков Homo sapiens , а также мамонта, мастодонта, пещерного медведя… Что касается более далекого прошлого, то была изучена ДНК из хлоропластов растений, чей возраст датируется 300-400 тыс. лет, и ДНК бактерий возрастом 400-600 тыс. лет.

Из исследований более «молодой» ДНК стоит отметить расшифровку генома штамма вируса гриппа, вызвавшего 1918 г. эпидемию знаменитой «испанки», и генома штамма чумной бактерии, опустошившей ­Европу в XIV в.; в обоих случаях материалы для анализа были выделены из захороненных останков умерших от болезни.

Нейропротезирование – человек или киборг?

Эти достижения принадлежат скорее к инженерной, а не биологической мысли, но от этого они не смотрятся менее фантастическими.

Вообще простейший тип нейропротеза – электронный слуховой аппарат – был изобретен еще более полувека назад. Микрофон этого устройства улавливает звук и передает электрические импульсы непосредственно на слуховой нерв или в ствол головного мозга – таким образом можно вернуть слух даже пациентам с полностью разрушенными структурами среднего и внутреннего уха.

Взрывообразное развитие микроэлектроники ­за по­следний десяток лет позволило создать такие виды нейро­протезов, что впору говорить о возможности скорого превращения человека в киборга. Это и искусственный глаз, действующий по тому же принципу, что и слуховой прибор; и электронные подавители проведения болевых импульсов через спинной мозг; и автоматические искусственные конечности, способные не только воспринимать управляющие импульсы мозга и выполнять действия, но и передавать ощущения обратно в мозг; и электромагнитные стимуляторы зон мозга, пораженных при болезни Паркинсона.

Сегодня уже ведутся исследования, касающиеся возможности интеграции разных отделов мозга с компьютерными микросхемами для улучшения умственных способностей. И хотя до полной реализации этой идеи далеко, но видеоклипы, показывающие людей с искусственными руками, уверенно пользующихся ножом и вилкой и играющими в настольный футбол, поражают воображение.

Нелинейная оптика в микроскопии – увидеть невидимое

Из курса физики студенты твердо усваивают понятие дифракционного предела: в самый лучший оптический микроскоп невозможно увидеть объект, размеры которого меньше половины длины волны, разделенной на показатель преломления среды. При длине волны 400 нм (фиолетовая область видимого спектра) и показателе преломления около единицы (как у воздуха) объекты мельче 200 нм неразличимы. А именно в этот размерный диапазон попадают, например, вирусы и множество интереснейших внутриклеточных ­структур.

Поэтому в последние годы широкое развитие в биологической микроскопии получили методы нелинейной и флуоресцентной оптики, для которых понятие дифракционного предела неприменимо. Сейчас такими методами удается в деталях исследовать внутреннее строение клеток.

Дизайнерские белки – эволюция в пробирке

Как и в синтетической биологии, речь идет о создании небывалого в природе, только на этот раз не новых организмов, а отдельных белков с необычными свойст­вами. Желать этого можно с помощью как усовершен­ствованных методов компьютерного моделирования, так и «эволюции в пробирке» – например, проводить селекцию искусственных белков на поверхно­сти специально созданных для этой цели бактериофагов.

В 2003 г. ученые из Вашингтонского университета с использованием методов компьютерного предсказания структуры создали белок Top7 – первый в мире ­белок, структура которого не имеет аналогов в живой природе. А на основе известных структур так называемых «цинковых пальцев» – элементов белков, узнающих участки ДНК с разной последовательностью, удалось создать искусственные ферменты, расщепляющие ДНК в любом заведомо заданном месте. Такие ферменты сейчас широко используются как инструменты для манипуляций с геномом: например, с их помощью можно удалить из генома человеческой клетки дефектный ген и заставить клетку заменить его нормальной копией.

Персонализированная медицина – получаем генные паспорта

Идея, что разные люди и болеют, и должны лечиться по-разному, далеко не нова. Даже если забыть про разный пол, возраст и образ жизни и не учитывать генетически обусловленные наследственные заболевания, все равно наш индивидуальный набор генов уникальным образом может влиять как на риск развития множе­ства болезней, так и на характер действия лекарств на организм.

Многие слышали про гены, дефекты в которых повышают риск развития онкозаболеваний. Другой пример касается приема гормональных контрацептивов: в случае, если женщина несет нередкий для европейцев «лейденский» ген фактора V (одного из белков системы свертывания крови), у нее резко повышается риск тромбоза, так как и гормоны, и этот вариант гена повышают свертываемость крови.

С развитием методов определения последовательно­сти ДНК стало возможным составление индивидуальных карт генетического здоровья: можно установить, какие известные варианты генов, связанных с заболеваниями или с ответом на лекарственные препараты, имеются в геноме конкретного человека. На основании такого анализа можно давать рекомендации о наиболее подходящем режиме питания, о необходимых профилактических осмотрах и о предосторожностях при применении тех или иных лекарств.

МикроРНК – о чем молчал геном

В 1990-х гг. было открыто явление РНК-интерференции – способности малых двуцепочечных дезоксирибонуклеиновых кислот снижать активность генов за счет деградации считываемых с них матричных РНК, на которых синтезируются белки. Оказалось, что клетки активно используют такой путь регуляции, синтезируя микроРНК, которые потом и разрезаются на фрагменты нужной длины.

Первая микроРНК была открыта в 1993 г., вторая – только через семь лет, при этом в обоих исследованиях была использована нематода Caenorhabditis elegans , которая сейчас служит одним из основных экспериментальных объектов в биологии развития. Зато потом открытия посыпались, как из рога изобилия.

Оказалось, что микроРНК участвуют и в эмбриональном развитии человека, и в патогенезе онкологических, сердечно-сосудистых и нервных заболеваний. А когда стало возможным одновременно прочитать последовательности всех РНК в клетке человека, оказалось, что огромная часть нашего генома, которая раньше считалась «молчащей», потому что не содержит генов, кодирующих белки, на самом деле служит матрицей для считывания микроРНК и других некодирующих РНК.

Д. б. н. Д. О. Жарков (Институт химической
биологии и фундаментальной медицины
СО РАН, Новосибирск)
­

Учёные, их вклад в развитие биологии .

Учёный

Его вклад в развитие биологии

Гиппократ 470-360 до н.э.

Первый учёный, создавший медицинскую школу. Древнегреческий врач, сформулировал учение о четырёх основных типах телосложения и темперамента, описал некоторые кости черепа, позвонки, внутренние органы, суставы, мышцы, крупные сосуды.

Аристотель

Один из основателей биологии как науки, впервые обобщил биологические знания, накопленные до него человечеством. Создал систематику животных, посвятил многие работы происхождению жизни.

Клавдий Гален

130-200 н.э.

Древнеримский учёный и врач. Заложил основы анатомии человека. Медик, хирург и философ. Гален внёс весомый вклад в понимание многих научных дисциплин, включая анатомию, физиологию, патологию, фармакологию и неврологию, а также философию и логику.

Авиценна 980-1048 г.

Выдающийся учёный в области медицины. Автор многих книг и работ по восточной медицине. Самый известный и влиятельный философ-учёный средневекового исламского мира. От того времени в современной анатомической номенклатуре сохранилось множество арабских терминов.

Леонардо да Винчи 1452-1519

Описал многие растения, изучал строение тела человека, деятельность сердца, зрительную функцию. Сделал 800 точных рисунков костей, мышц, сердца и научно описал их. Его рисунки – первые анатомически верные изображения тела человека, его органов, систем органов с натуры.

Андреас Везалий

1514-1564

Основоположник описательной анатомии. Создал труд «О строении человеческого тела».

Везалий исправил свыше 200 ошибок канонизированного античного автора. Также исправил ошибку Аристотеля о том, что мужчина имеет 32 зуба, а женщина 38. Классифицировал зубы на резцы, клыки и моляры. Трупы ему приходилось тайно добывать на кладбище, так как в то время вскрытие трупа человека было запрещено церковью.

Уильям Гарвей

Открыл круги кровообращения.

ГАРВЕЙ Уильям (1578-1657), английский врач, основатель современных наук физиологии и эмбриологии. Описал большой и малый круги кровообращения. Заслугой Гарвея,
в частности, является то, что именно он
экспериментально доказал наличие замкнутого
круга кровообращения у человека, частями
которого являются артерии и вены, а сердце –
насосом. Впервые высказал мысль, что «все живое происходит из яйца».

Карл Линней 1707-1778

Линней - создатель единой системы классификации растительного и животного мира, в которой были обобщены и в значительной степени упорядочены знания всего предыдущего периода развития . Среди главных заслуг Линнея - введение точной терминологии при описании биологических объектов, внедрение в активное употребление , установление чёткого соподчинения между .

Карл Эрнст Бэр

Профессор Петербургской медико-хирургической академии. Открыл яйцеклетку у млекопитающих, описал стадию бластулы, изучил эмбриогенез цыпленка, установил сходство эмбрионов высших и низших животных, теорию последовательного появление в эмбриогенезе признаков типа, класса, отряда и т.п. Изучая внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи. Основатель эмбриологии, сформулировал закон зародышевого сходства (установил основные типы эмбрионального развития).

Жан Батист Ламарк

Биолог, создавший первую целостную теорию эволюции живого мира. Ламарк ввел термин " биология " (1802). Ламарку принадлежат два закона эволюции:
1. Витализм. Живыми организмами управляет внутреннее стремление к совершенствованию. Изменения условий сразу вызывают изменения привычек и посредством упражнений соответствующие органы изменяются.
2. Приобретенные изменения наследуются.

Жорж Кювье

Создатель палеонтологии – науки об ископаемых животных и растениях. Автор «теории катастроф»: после катастрофических событий, уничтожавших животных, возникали новые виды, но проходило время, и снова происходила катастрофа, приводившая к вымиранию живых организмов, но природа возрождала жизнь, и появлялись хорошо приспособленные к новым условиям окружающей среды виды, затем снова погибавшие во время страшной катастрофы.

Т.Шванн и М. Шлейден

Основатели клеточной теории: клетка - основная единица строения, функционирования и развития всех живых организмов; клетки всех одноклеточных и многоклеточных организмов сходны по своему строению, химическому составу, жизнедеятельности и обмену веществ; размножение клеток происходит путем их деления, в сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы. Эти положения доказывают единство происхождения всех живых организмов, единство всего органического мира.

Ч. Дарвин

1809-1882г.

Создал теорию эволюции, эволюционное учение. Сущность эволюционного учения заключается в следующих основных положениях:
Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.

Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.
В основе преобразования видов в природе лежат такие свойства организмов, как наследственность и изменчивость, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.

Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.

Г. Мендель

1822-1884г.

Основоположник генетики как науки.

1 закон : Единообразие гибридов первого поколения. При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.
2 закон : Расщепление признаков. При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.
3 закон : Закон независимого наследования . При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Карл Максимович

Бэр

Основоположник сравнительной эмбриологии. Бэр установил сходство эмбрионов высших и низших , последовательное появление в эмбриогенезе признаков типа, класса, отряда и т. д.; описал развитие всех основных органов позвоночных.

Николай Алексеевич Северцов

Особенно много внимания он уделял изучению птиц- он был одним из крупнейших орнитологов своего времени.

А.И.Опарин

Теория происхождения жизни на Земле. «О возникновении жизни», в котором предложил теорию возникновения жизни из бульона органических веществ. В середине XX века были экспериментально получены сложные органические вещества при пропускании электрических зарядов через смесь газов и паров, которая гипотетически совпадает с составом атмосферы древней Земли.

Луи Пастер

Основоположник микробиологии. Разработал методы прививок против заразных болезней.(сибирская язва, краснуха, бешенство)

С.Г. Навашин

Открыл двойное оплодотворение у растений

Р. Кох 1843-1910

Один из основателей микробиологии. В 1882 году Кох сообщил о своем открытии возбудителя туберкулеза, за которое был удостоен Нобелевской премии и мировой славы. В 1883 году опубликована еще одна классическая работа Коха – о возбудителе холеры. Этот выдающийся успех был достигнут им в результате изучения холерных эпидемий в Египте и Индии.

Д. И. Ивановский 1864-1920г.

Русский физиолог растений и микробиолог, основоположник вирусологии. Открыл вирусы.

Установил наличие фильтрующихся вирусов, являвшихся причинами болезни наряду с видимыми в микроскоп микробами. Это дало начало новой отрасли науки - вирусологии, которая получила бурное развитие в 20 в.

И. Мечников

1845-1916г.

Заложил основы иммунологии. Российский биолог и патолог, один из основоположников сравнительной патологии, эволюционной эмбриологии и отечественной микробиологии, иммунологии, создатель учения о фагоцитозе и теории иммунитета, создатель научной школы, член-корреспондент (1883), почетный член (1902) Петербургской АН. Совместно с Н. Ф. Гамалеей основал (1886) первую в России бактериологическую станцию. Открыл (1882) явление фагоцитоза. В трудах «Невосприимчивость в инфекционных болезнях» (1901) изложил фагоцитарную теорию иммунитета. Создал теорию происхождения многоклеточных организмов.

Л. Пастер 1822-1895г.

Заложил основы иммунологии.

Л. Пастер является основоположником научной иммунологии, хотя и до него был известен метод предупреждения оспы путем заражения людей коровьей оспой, разработанный английским врачом Э. Дженнером. Однако этот метод не был распространен на профилактику других болезней.

И. Сеченов

1829-1905г.

Физиолог. Заложил основы изучения высшей нервной деятельности. Сеченов открыл так называемое центральное торможение - особые механизмы в головном мозге лягушки, подавляющие или угнетающие рефлексы. Это было совершенно новое явление, которое получило название "сеченовского торможения". Открытое Сеченовым явление торможения позволило установить, что вся нервная деятельность складывается из взаимодействия двух процессов - возбуждения и торможения.

И. Павлов 1849-1936г.

Физиолог. Заложил основы изучения высшей нервной деятельности. Создал учение об условных рефлексах. Далее идеи И. М. Сеченова получили развитие в трудах И.П. Павлова, который открыл пути объективного экспериментального исследования функций коры, разработал метод выработки условных рефлексов и создал учение о высшей нервной деятельности. Павлов в своих трудах ввел деление рефлексов на безусловные, которые осуществляются врожденными, наследственно закрепленными нервными путями, и условные, которые, осуществляются посредством нервных связей, формирующихся в процессе индивидуальной жизни человека или животного.

Гуго де Фриз

Создал мутационную теорию. Гуго де Фриз (1848–1935) - голландский ботаник и генетик, один из основателей учения об изменчивости и эволюции, провёл первые систематические исследования мутационного процесса. Исследовал явление плазмолиза (сокращения клеток в растворе, концентрация которого выше концентрации их содержимого) и в итоге разработал метод определения осмотического давления в клетке. Ввёл понятие «изотонический раствор».

Т. Морган 1866-1943г.

Создал хромосомную теорию наследственности.

Основным объектом, с которым работали Т. Морган и его ученики, была плодовая мушка дрозофила, имеющая диплоидный набор из 8 хромосом. Эксперименты показали что гены, находящиеся в одной хромосоме при мейозе попадают в одну гамету, т. е. наследуются сцепленно. Это явление получило название закона Моргана. Было также показано что у каждого гена в хромосоме есть строго определенное место - локус.

В. И. Вернадский

1863-1945

Основал учение о биосфере. Идеи Вернадского сыграли выдающуюся роль в становлении современной научной картины мира. В центре его естественнонаучных и философских интересов - разработка целостного учения о биосфере, живом веществе (организующем земную оболочку) и эволюции биосферы в ноосферу, в которой человеческий разум и деятельность, научная мысль становятся определяющим фактором развития, мощной силой, сравнимой по своему воздействию на природу с геологическими процессами. Учение Вернадского о взаимоотношении природы и общества оказало сильное влияние на формирование современного экологического сознания.

1884-1963

Разработал учение о факторах эволюции. Ему принадлежат многочисленные труды по вопросам эволюционной морфологии, по изучению закономерностей роста животных, по вопросам о факторах и закономерностях эволюционного процесса. Ряд работ посвящен истории развития и сравнительной анатомии. Предложил свою теорию роста животных организмов, в основе к-рой лежит представление об обратном соотношении между скоростью роста организма и скоростью его дифференцировки. В ряде исследований разработал теорию стабилизирующего отбора как существенного фактора эволюции. С 1948 занимается изучением вопроса о происхождении наземных позвоночных.

Дж. Уотсон (1928г.) и Ф. Крик (1916- 2004г)

1953г. Установили структуру ДНК. Джеймс Дьюи Уотсон – американский специалист по молекулярной биологии, генетик и зоолог; более всего известен участием в открытии структуры ДНК в 1953-м. Лауреат Нобелевской премии по физиологии и медицине.

После успешного окончания Университета Чикаго и Университета Индианы Уотсон некоторое время вел исследования по химии вместе с биохимиком Германом Калькаром в Копенгагене. Позже он перебрался в лабораторию Кэвендиша при Университете Кембриджа, где ему впервые довелось встретить его будущего коллегу и товарища Фрэнсиса Крика.

Биология как наука.

Биология – наука, изучающая свойства живых систем.

Наука – это сфера человеческой деятельности по получению, систематизации объективных знаний о действительности.

Объект – науки – биологии является жизнь во всех ее проявлениях и формах, а также на разных уровнях. Носитель жизни – живые тела. Все, что связано с их существованием, изучает биология.

Метод – это путь исследования, который проходит ученый, решая какую – либо научную задачу, проблему.

Основные методы науки :

1.Моделирование

метод, при котором создается некий образ объекта, модель с помощью которой ученые получают необходимые сведения об объекте.

Создание из пластмассовых элементов модели ДНК

2.Наблюдение

метод, с помощью которого исследователь собирает информацию об объекте

Наблюдать можно визуально, например за поведением животных. Можно наблюдать с помощью приборов за изменениями происходящими в живых объектах, например при снятии кардиограммы в течении суток. Наблюдать можно за сезонными изменениями в природе, например за линькой животных.

3.Эксперимент (опыт)

метод, с помощью которого проверяют результаты наблюдений, выдвинутые предположения – гипотезы. Это всегда получение новых знаний с помощью поставленного опыта.

Скрещивание животных или растений с целью получения нового сорта или породы, проверка нового лекарства.

4.Проблема

вопрос, задача, требующие решения. Решение проблемы ведер к получению нового знания. Научная проблема всегда скрывает какое-то противоречие между известным и неизвестным. Решение проблемы требует от ученого сбора фактов, их анализа, систематизации.

Пример проблемы: «Как возникает приспособленность организмов к окружающей среде?» или «Каким образом можно подготовиться к серьезным экзаменам»

5.Гипотеза

предположение, предварительное решение поставленной проблемы. Выдвигая гипотезы, исследователь ищет взаимосвязи между фактами, явлениями, процессами. Именно поэтому гипотеза чаще всего имеет форму предположения: «если…тогда».

«Если растения на свету выделяют кислород, то мы сможем его обнаружить с помощью тлеющей лучины, т.к. кислород должен поддерживать горение»

6.Теория

это обобщение основных идей в какой – либо научной области знания

Теория эволюции обобщает все достоверные научные данные, полученные исследователями на протяжении многих десятилетий. Со временем теория дополняется новыми данными, развивается. Некоторые теории могут опровергаться новыми фактами. Верные научные теории подтверждаются практикой.

Частные методы в биологии :

Генеалогический метод

Применяется при составлении родословных людей, выявление характера наследования некоторых признаков

Исторический метод

Установление взаимосвязей между фактами, процессами, явлениями, происходящими на протяжении исторически длительного времени (несколько миллиардов лет).

Палеонтологический метод

Позволяет выяснить родство между древними организмами, останки которых находятся в земной коре, в разных геологических слоях.

Центрифугирование

Разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки, легких и тяжелых фракций органических веществ.

Цитологический или цитогенетический метод

Исследование строения клетки, ее структур с помощью различных микроскопов.

Биохимический метод

Исследование химических процессов, происходящих в организме.

Близнецовый метод

Используется для выяснения степени наследственной обусловленности исследуемых признаков. Метод дает ценные результаты при изучении морфологических и физиологических признаков.

Гибридологический метод

Скрещивание организмов и анализ потомства

Науки

Палеонтология

наука об ископаемых останках растений и животных

Молекулярная биология

комплекс биологических наук, изучающих механизмы хранения, передачи и реализации генетической информации, строение и функции нерегулярных биополимеров (белков и нуклеиновых кислот).

Сравнительная физиология

раздел физиологии животных, изучающий методом сравнения особенности физиологических функций у различных представителей животного мира.

Экология

наука о взаимодействиях живых организмов и их сообществ между собой и с окружающей средой.

Эмбриология

это наука, изучающая развитие зародыша.

Селекция

наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов.

Физиология

наука о сущности живого и жизни в норме и при патологиях, то есть о закономерностях функционирования и регуляции биологических систем разного уровня организации, о пределах нормы жизненных процессов и болезненных отклонений от неё

Ботаника

Наука о растениях

Цитология

раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

Генетика

наука о закономерностях наследственности и изменчивости.

Систематика

раздел биологии , призванный создать единую стройную систему живого на основе выделения системы биологических таксонов и соответствующих названий, выстроенных по определенным правилам (номенклатура)

Морфология

изучает как внешнее строение (форму, структуру, цвет, образцы) организма , таксона или его составных частей, так и внутреннее строение живого организма

Ботаника

Наука о растениях

Анатомия

раздел биологии, изучающий морфологию человеческого организма, его систем и органов.

Психология

наука о поведении и психических процессах

Гигиена

наука, изучающая влияние факторов внешней среды на организм человека с целью оптимизации благоприятного и профилактики неблагоприятного воздействия.

Орнитология

раздел зоологии позвоночных, изучающий птиц, их эмбриологию, морфологию, физиологию, экологию, систематику и географическое распространение.

Микология

Наука о грибах

Ихтиология

Наука о рыбах

Фенология

Наука о развитии живой природы

Зоология

Наука о животных

Микробиология

Наука о бактериях

Вирусология

Наука о вирусах

Антропология

совокупность научных дисциплин, занимающихся изучением человека, его происхождения, развития, существования в природной (естественной) и культурной (искусственной) средах.

Медицина

область научной и практической деятельности по исследованию нормальных и патологических процессов в организме человека, различных заболеваний и патологических состояний, их лечению, сохранению и укреплению здоровья людей

Гистология

Наука о тканях

Биофизика

это наука о физических процессах, протекающих в биологических системах разного уровня организации и о влиянии на биологические объекты различных физических факт

Биохимия

наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности

Бионика

прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги.

Сравнительная анатомия

биологическая дисциплина, изучающая общие закономерности строения и развития органов и систем органов при помощи их сравнения у животных разных таксонов на разных этапах эмбриогенеза.

Теория эволюции

Наука о причинах, движущих силах, механизмах и общих закономерностях эволюции живой природы

Синэкология

раздел экологии, изучающий взаимоотношения организмов различных видов внутри сообщества организмов.

Биогеография

наука на стыке биологии и географии; изучает закономерности географического распространения и распределения животных, растений и микроорганизмов

Аутоэкология

раздел экологии, изучающий взаимоотношения организма с окружающей средой.

Протистология

наука, изучающая одноклеточные эукариотические организмы, относящиеся к типу простейших

Бриология

Наука о мхах

Альгология

наука о морфологии, физиологии, генетике, экологии и эволюции макро и микроскопических одно и многоклеточных водорослей

Признаки и свойства живого

Единство элементного химического состава

В состав живого входят те же элементы, что и в состав неживой природы, но в других количественных соотношениях; при этом примерно 98% приходится на углевод, водород, кислород, азот.

Единство биохимического состава

Все живые организмы состоят в основном из белков, липидов, углеводов и нуклеиновых кислот.

Единство структурной организации

Единицей строения, жизнедеятельности, размножения, индивидуального развития является клетка; вне клетки жизни нет.

Дискретность и целостность

Любая биологическая система состоит из отдельных взаимодействующих частей (молекулы, органоиды, клетки, ткани, организмы, виды и т.д.), которые вместе образуют структурно – функциональное единство.

Обмен веществ и энергии (метаболизм)

Обмен веществ состоит из двух взаимосвязанных процессов: ассимиляции (пластического обмена) – синтеза органических веществ в организме (за счет внешних источников энергии – света, пищи) и диссимиляции (энергетического обмена) – процесса распада сложных органических веществ с выделением энергии, которая затем расходуется организмом.

Саморегуляция

Любые живые организмы обитают в постоянно изменяющихся условиях окружающей среды. Благодаря способности к саморегуляции в процессе метаболизма сохраняются относительное постоянство химического состава и интенсивность течения физиологических процессов, т.е. поддерживается гомеостаз.

Открытость

Все живые системы являются открытыми, потому что в процессе их жизнедеятельности между ними и окружающей средой происходит постоянный обмен веществом и энергией.

Размножение

Это способность организмов воспроизводить себе подобных. В основе воспроизведения лежат реакции матричного синтеза, т.е. образование новых молекул и структур на основе информации, заложенной в последовательности нуклеотидов ДНК. Это свойство обеспечивает непрерывность жизни и преемственность поколений.

Наследственность и изменчивость

Наследственность – способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Основой наследственности является относительное постоянство строения молекул ДНК.

Изменчивость – свойство, противоположное наследственности; способность живых организмов существовать в различных формах, т.е. приобретать новые признаки, отличные от качеств других особей того же вида. Изменчивость, обусловленная изменениями наследственных задатков – генов, создает разнообразный материал для естественного отбора, т.е. отбора особей, наиболее приспособленных к конкретным условиям существования в природе. Это приводит к появлению новых форм жизни, новых видов организмов.

Рост и развитие

Индивидуальное развитие, или онтогенез, - развитие живого организма от зарождения до момента смерти. В процессе онтогенеза постепенно и последовательно проявляются индивидуальные свойства организма. В основе этого лежит поэтапная реализация наследственных программ. Индивидуальное развитие обычно сопровождается ростом.

Историческое развитие, или филогенез, - необратимое направленное развитие живой природы, сопровождающееся образованием новых видов и прогрессивным усложнением жизни.

Раздражимость

Способность организма избирательно реагировать на внешние и внутренние воздействия, т.е. воспринимать раздражение и отвечать определенным образом. Ответная реакция организма на раздражение, осуществляемая при участии нервной системы, называется рефлексом.

Организмы, у которых отсутствует нервная система, отвечают на воздействие изменением характера движения и роста, например листья растений, поворачиваются к свету.

Ритмичность

Суточные и сезонные ритмы направлены на приспособление организмов к меняющимся условиям существования. Наиболее известным ритмическим процессом в природе является чередование периодов сна и бодрствования.

Уровни организации живой природы

Уровень организации

Биологическая система

Элементы, образующие систему

Значение уровня в органическом мире

1.Молекулярно - генетический

Ген (макромолекула)

Макромолекулы нуклеиновых кислот, белков, АТФ

Кодирование и передача наследственной информации, обмен веществ, превращение энергии

2.Клеточный

Клетка

Структурные части клетки

Существование клетки лежит в основе размножения, роста и развития живых организмов, биосинтеза белка.

3.Тканевый

Ткань

Совокупность клеток и межклеточного вещества

Разные виды тканей у животных и растений отличаются строением и выполняют различные функции. Изучение этого уровня позволяет проследить эволюцию и индивидуальное развитие тканей.

4.Органный

Орган

Клетки, ткани

Позволяет изучать строение, функции, механизм действия, происхождение, эволюцию и индивидуальное развитие органов растений и животных.

5.Организменный

Организм (особь)

Клетки, ткани, органы и системы органов с их уникальными жизненными функциями

Обеспечивает функционирование органов в жизнедеятельности организма, приспособительные изменения и поведение организмов в различных экологических условиях.

6.Популяционно - видовой

Популяция

Совокупность особей одного вида

Осуществляется процесс видообразования.

7.Биогеоценотический (экосистемный)

Биогеоценоз

Исторически сложившаяся совокупность организмов разного ранга в сочетании с факторами окружающей среды

Круговорот веществ и энергии

8.Биосферный

Биосфера

Все биогеоценозы

Здесь происходят все круговороты веществ и энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.

Ученые – биологи

Гиппократ

Создал научную медицинскую школу. Считал, что у каждой болезни есть естественные причины, и их можно узнать, изучая строение и жизнедеятельность человеческого организма.

Аристотель

Один из основателей биологии как науки, впервые обобщил биологические знания, накопленные до него человечеством.

Клавдий Гален

Заложил основы анатомии человека.

Авиценна

В современной анатомической номенклатуре сохранил арабские термины.

Леонардо да Винчи

Описал многие растения, изучал строение человеческого тела, деятельность сердца и зрительную функцию.

Андреас Визалия

Работа «О строении человеческого тела»

Уильям Гарвей

Открыл кровообращение

Карл Линней

Предложил систему классификации живой природы, ввел бинарную номенклатуру для наименования видов.

Карл Бэр

Изучал внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи, сформулировал закон зародышевого сходства, основатель эмбриологии.

Жан Батист Ламарк

Первым попытался создать стройную и целостную теорию эволюции живого мира.

Жорж Кювье

Создал науку палеонтологию.

Теодор Шванн и Шлейден

Создали клеточную теорию

Ч Дарвин

Эволюционное учение.

Грегор Мендель

Основоположник генетики

Роберт Кох

Основатель микробиологии

Луи Пастер и Мечников

Основатели иммунологии.

И.М. Сеченов

Заложил основы изучения высшей нервной деятельности

И.П. Павлов

Создал учение об условных рефлексах

Гуго де Фриза

Мутационная теория

Томас Морган

Хромосомная теория наследственности

И.И. Шмальгаузен

Учение о факторах эволюции

В.И. Вернадский

Учение о биосфере

А. Флеминг

Открыл антибиотики

Д. Уотсон

Установил структурц ДНК

Д.И. Ивановский

Открыл вирусы

Н.И. Вавилов

Учение о многообразии и происхождении культурных растений

И.В. Мичурин

Селекционер

А.А. Ухтомский

Учение о доминанте

Э.Геккель и И.Мюллер

Создали биогенетический закон

С.С. Четвериков

Исследовал мутационные процессы

И.Янсен

Создал первый микроскоп

Роберт Гук

Первым обнаружил клетку

Антониа Левенгук

Увидел в микроскоп микроскопических организмов

Р.Броун

Описал ядро растительной клетки

Р.Вирхов

Теория целлюлярной патологии.

Д.И.Ивановский

Открыл возбудителя табачной мозаики (вирус)

М.Кальвин

Химическая эволюция

Г.Д.Карпеченко

Селекционер

А.О.Ковалевский

Основоположник сравнительной эмбриологии и физиологии

В.О.Ковалевский

Основоположник эволюционной палеонтологии

Н.И.Вавилов

Учение о биологических основах селекции и учение о центрах происхождения культурных растений.

Х.Кребс

Изучал метаболизм

С.Г.Навашин

Открыл двойное оплодотворение у покрытосеменных

А.И.Опарин

Теория самозарождения жизни

Д.Холдейн

Создал учение о дыхании человека

Ф.Реди

А.С.Северцов

Основатель эволюционной морфологии животных

В.Н.Сукачев

Основоположник биогеоценологии

А.Уоллес

Сформулировал теорию естественного отбора, которая совпала с Дарвиным

Ф.Крик

Изучал животные организмы на молекулярном уровне

К.А.Темирязев

Раскрыл закономерности фотосинтеза

Биология – как наука.

Часть А.

1.Биология как наука изучает 1) общие признаки строения растений и животных; 2) взаимосвязь живой и неживой природы; 3) процессы, происходящие в живых системах; 4) происхождение жизни на Земле.

2.И.П. Павлов в своих работах по пищеварению применял метод исследования: 1) исторический; 2) описательный; 3) экспериментальный; 4) биохимический.

3.Предположение Ч.Дарвина о том, что у каждого современного вида или группы видов были общие предки – это 1) теория; 2) гипотеза; 3) факт; 4) доказательство.

4.Эмбриология изучает 1) развитие организма от зиготы до рождения; 2) строение и функции яйцеклетки; 3) послеродовое развитие человека; 4) развитие организма от рождения до смерти.

5.Количество и форма хромосом в клетке устанавливается методом исследования 1) биохимическим; 2) цитологическим; 3) центрифугированием; 4) сравнительным.

6.Селекция как наука решает задачи 1) создание новых сортов растений и пород животных; 2) сохранение биосферы; 3) создание агроценозов; 4) создание новых удобрений.

7.Закономерности наследования признаков у человека устанавливаются методом 1) экспериментальным; 2) гибридологическим; 3) генеалогическим; 4) наблюдения.

8.Специальность ученого, изучающего тонкие структуры хромосом, называется: 1) селекционер; 2) цитогенетик; 3) морфолог; 4) эмбриолог.

9.Систематика – это наука, занимающаяся 1) изучением внешнего строения организмов; 2) изучением функций организма 3) выявлением связей между организмами; 4) классификацией организмов.

10.Способность организма отвечать на воздействия окружающей среды называют: 1) воспроизведением; 2) эволюцией; 3) раздражимостью; 4) нормой реакции.

11.Обмен веществ и превращение энергии – это признак, по которому: 1) устанавливают сходство тел живой и неживой природы; 2) живое можно отличить от неживого; 3) одноклеточные организмы отличаются от многоклеточных; 4) животные отличаются от человека.

12.Для живых объектов природы, в отличие от неживых тел, характерно: 1) уменьшение веса; 2) перемещение в пространстве; 3) дыхание; 4) растворение веществ в воде.

13.Возникновение мутаций связано с таким свойством организма, как: 1) наследственность; 2) изменчивость; 3) раздражимость; 4) самовоспроизведение.

14.Фотосинтез, биосинтез белка – это приметы: 1) пластического обмена веществ; 2) энергетического обмена веществ; 3) питания и дыхания; 4) гомеостаза.

15.На каком уровне организации живого происходят генные мутации: 1) организменном; 2) клеточном; 3) видовом; 4) молекулярном.

16.Строение и функции молекул белка изучают на уровне организации живого:1) организменном; 2) тканевом; 3) молекулярном; 4) популяционном.

17.На каком уровне организации живого осуществляется в природе круговорот веществ?

1) клеточном; 2) организменном; 3) популяционно – видовом; 4) биосферном.

18.Живое от неживого отличается способностью: 1) изменять свойства объекта под воздействием среды; 2) участвовать в круговороте веществ; 3) воспроизводить себе подобных; 4) изменять размеры объекта под воздействием среды.

19.Клеточное строение – важный признак живого, характерный для:1) бактериофагов; 2)вирусов; 3) кристаллов; 4) бактерий.

20.Поддержание относительного постоянства химического состава организма называется:

1) метаболизм; 2) ассимиляция; 3) гомеостаз; 4) адаптация.

21.Одергивание руки от горячего предмета – это пример: 1) раздражимости;2) способности к адаптации; 3) наследования признаков от родителей; 4) саморегуляции.

22.Какой из терминов является синонимом понятия «обмен веществ»:1) анаболизм; 2) катаболизм; 3) ассимиляция; 4) метаболизм.

23.Роль рибосом в процессе биосинтеза белка изучают на уровне организации живого:

1) организменном; 2) клеточном; 3) тканевом; 4) популяционном.

24.На каком уровне организации происходит реализация наследственной информации:

1) биосферном; 2) экосистемном; 3) популяционном; 4) организменном.

25.Уровень, на котором изучают процессы биогенной миграции атомов называется:

1) биогеоценотический; 2) биосферный; 3) популяционно – видовой; 4) молекулярно – генетический.

26. На популяционно – видовом уровне изучают: 1) мутации генов; 2) взаимосвязи организмов одного вида; 3) системы органов; 4) процессы обмена веществ в организме.

27.Какая из перечисленных биологических систем образует наиболее высокий уровень жизни?

1) клетка амебы; 2) вирус оспы; 3) стадо оленей; 4) природный заповедник.

28.Какой метод генетики используют для определения роли факторов среды в формировании фенотипа человека? 1) генеалогический; 2) биохимический; 3) палеонтологический;

4) близнецовый.

29.Генеалогический метод используют для 1) получение генных и геномных мутаций; 2) изучение влияния воспитания на онтогенез человека; 3) исследования наследственности и изменчивости человека; 4) изучения этапов эволюции органического мира.

30. Какая наука изучает отпечатки и окаменелости вымерших организмов? 1) физиология; 2) экология; 3) палеонтология; 4) селекция.

31.Изучением многообразия организмов, их классификацией занимается наука 1) генетика;

2) систематика; 3) физиология; 4) экология.

32.Развитие организма животного от момента образования зиготы до рождения изучает наука

1) генетика; 2) физиология; 3) морфология; 4) эмбриология.

33.Какая наука изучает строение и функции клеток организмов разных царств живой природы?

1) экология; 2) генетика; 3) селекция; 4) цитология.

34.Сущность гибридологического метода заключается в 1) скрещивании организмов и анализе потомства; 2) искусственном получении мутаций; 3) исследовании генеалогического древа; 4) изучении этапов онтогенеза.

35.Какой метод позволяет избирательно выделять и изучать органоиды клетки? 1) скрещивание;

2) центрифугирование; 3) моделирование; 4) биохимический.

36.Какая наука изучает жизнедеятельность организмов? 1) биогеография; 2) эмбриология; 3) сравнительная анатомия; 4) физиология.

37.Какая биологическая наука исследует ископаемые остатки растений и животных?

1) систематика; 2) ботаника; 3) зоология; 4) палеонтология.

38.С какой биологической наукой связана такая отрасль пищевой промышленности, как сыроделие?

1) микологией; 2) генетикой; 3) биотехнологией; 4) микробиологией.

39.Гипотеза – это 1) общепринятое объяснение явления; 2) то же самое, что и теория; 3) попытка объяснить специфическое явление; 4) устойчивые отношения между явлениями в природе.

40.Выберите правильную последовательность этапов научного исследования

1) гипотеза-наблюдение-теория-эксперимент; 2) наблюдение-эксперимент-гипотеза-теория; 3) наблюдение-гипотеза-эксперимент-теория; 4) гипотеза-эксперимент-наблюдение-закон.

41.Какой метод биологических исследований самый древний? 1) экспериментальный; 2) сравнительно-описательный; 3) мониторинг; 4) моделирование.

42.Какая часть микроскопа относится к оптической системе? 1) основание; 2) тубусодержатель; 3) предметный столик; 4) объектив.

43.Выберите правильную последовательность прохождения световых лучей в световом микроскопе

1) объектив-препарат-тубус-окуляр; 2) зеркало-объектив-тубус-окуляр; 3) окуляр-тубус-объектив-зеркало; 4) тубус-зеркало-препарат-объектив.

44.Пример какого уровня организации живой материи представляет собой участок соснового леса?

1) организменный; 2) популяционно-видовой; 3) биогеоценотический; 4) биосферный.

45.Что из перечисленного не является свойством биологических систем? 1) способность отвечать на стимулы окружающей среды; 2) способность получать энергию и использовать ее; 3) способность к воспроизведению; 4) сложная организация.

46.Какая наука изучает в основном надорганизменные уровни организации живой материи?

1) экология; 2) ботаника; 3) эволюционное учение; 4) биогеография.

47.На каких уровнях организации находится хламидомонада? 1) только клеточном; 2) клеточном и тканевом; 3) клеточном и организменном; 4) клеточном и популяционно-видовом.

48.Биологические системы являются 1) изолированными; 2) закрытыми; 3) замкнутыми; 4) открытыми.

49.Какой метод следует использовать для изучения сезонных изменений в природе? 1) измерение; 2) наблюдение; 3) эксперимент; 4) классификацию.

50.Созданием новых сортов полиплоидных растений пшеницы занимается наука 1) селекция; 2) физиология; 3) ботаника; 4) биохимия.

Часть В. (выбрать три правильных ответа)

В1.Укажите три функции, которые выполняет современная клеточная теория 1) экспериментально подтверждает научные данные о строении организмов; 2) прогнозирует появление новых фактов, явлений; 3) описывает клеточное строение разных организмов; 4) систематизирует, анализирует и объясняет новые факты о клеточном строении организмов; 5) выдвигает гипотезы о клеточном строении всех организмов; 6) создает новые методы исследования клетки.

В2.Выберите процессы происходящие на молекулярно – генетическом уровне: 1) репликация ДНК; 2) наследование болезни Дауна; 3) ферментативные реакции; 4) строение митохондрий; 5) структура клеточной мембраны; 6) кровообращение.

Часть В. (уставить соответствие)

В3.Соотнесите характер адаптации организмов с условиями, к которым они вырабатывались:

Адаптации Уровни жизни

А) яркая окраска самцов павианов 1)защита от хищников

Б) пятнистая окраска молодых оленей 2)поиск полового партнера

В) борьба двух лосей

Г) сходство палочников с сучками

Д) ядовитость пауков

Е) сильный запах у кошек

Часть С.

1.Какие приспособления растений обеспечивают им размножение и расселение?

2.Что общего и в чем заключаются различия между разными уровнями организации жизни?

3.Распределите уровни организации живой материи по принципу иерархичности. В основе какой системы лежит тот же самый принцип иерархичности? Какие отрасли биологии изучают жизнь на каждом из уровней.?

4.Каковы, по вашему мнению, степень ответственности ученых за социальные и моральные последствия их открытий?


Конец XX века и начало XXI , повлекли за собой вереницу открытий. Новые открытия в биологии выстраивают перед собой кучу вопросов, которые заставляют задумать ученых о том, что все не так просто в этом мире. Поиск истины – вот главная цель исследователей.

Открытия в биологии XX века

В 1951 году исследователь Эрвин Чаргаффу пришел к одному выводу, который в корне изменил взгляд на структуру нуклеиновых кислот. Ранее считалось, что все нуклеиновые кислоты созданы из тетра-блоков, поэтому лишены специфичности. В течение трех лет ученый занимался исследованием и, наконец, смог доказать, что нуклеиновые кислоты, полученные из разных источников, отличаются своим составом друг от друга – они специфичны. Ученый выстроил модель ДНК, которая своим видом была похожа на двойную спираль, при помещении на плоскость она была похожа на лестницу. Было выявлено, что строение одной отдельно взятой ветки ДНК определяет строение другой ее ветки – это связано с тем, что основание примыкающих определяет последовательность других направляющих. Таким образом, было определено новое свойство ДНК – комплиментарность.

Далее были необходимы исследования в области молекулярной биологии, которые бы провели расшифровку механизма репликации и транскрипции ДНК. Ученые предположили, что нить раскручивается, ее нити расходятся, а далее, в соответствии с правилом комплиментарности, из каждой нити образовывается молекула. Чуть позже опыты подтвердили данную гипотезу.

В 1954 году Георгий Антонович Гамов, на основании исследования Эрвина Чаргаффа, предположил, что аминокислоты закодированы из сочетания трех нуклеотидов.

В 1961 году французские ученые Жак Моно и Франсуа Жакоб воссоздали схему, регулирующую активные гены. Ученые говорили о том, что ДНК имеет не только информационные гены, но и гены-операторы и гены-регуляторы.

Новые открытия в биологии XXI века

В 2007 году объединение ученых университета Висконсис-Мэдисон и Киотского университета провели один эксперимент, благодаря которому клетки кожи взрослого человека стали вести себя как стволовые клетки эмбриона. Клетка смогла трансформироваться практически в любой вид. Финансовые рамки можно отбросить, ведь таким образом, клетки из ДНК человека могут стать органом для пересадки. Выращенный таким способ орган, не будет отторгаться организмом пациента.

Исследование «Геном человека», завершилось в 2006 году. Данный проект был назван самым важным исследованием в области биологии. Главная цель работы – определить последовательность нуклеотидов, а также изучить около 20 000 тыс. генов человека. Под руководством ученого Джеймса Уотсона, в 2000г. была представлена часть структуры генома, а в 2003г. исследование структуры были завершены. Невзирая на то, что официально «Геном человека» был закончен в 2006 году, анализ некоторых участков продолжается и сегодня. Данное исследование открывает новые теории эволюции. Знания, полученные в ходе работы, уже активно используются в медицине.

В XX веке биология как наука шла вперед большими шагами, а начало XXI века уже примечательно открытиями. Можно предположить, что новые открытия в биологии откроют много тайн и загадок, которые, возможно, смогут перевернуть все былые знания и утвержденные теории.

Десятка значимых открытий первого десятилетия XXI века – видео