Одно- и двухконтурный пневматические приводы тормозов. Гидравлический тормозной привод Принцип работы двухконтурной тормозной системы

В современных автомобилях тормоза с гидроприводом устанавливаются на всех четырех колесах. Тормоза бывают дисковыми и барабанными.

Передние тормоза играют большую роль с остановке автомобиля, чем задние, т.к. при торможении вес переносится на передние колеса.

Во многих автомобилях передние колеса оснащены дисковыми тормозами, которые считаются более эффективными, а задние - барабанными.

Тормозные системы, которые состоят только из дисков, устанавливаются на самых дорогих и высокопроизводительных автомобилях, а тормозные системы, которые состоят только из барабанов, характерны для старых автомобилей небольшого размера.

Двухконтурная тормозная система

В типичной двухконтурной тормозной системе каждая цепь работает для обоих передних колес и одного из задних колес. При нажатии на педаль тормоза жидкость из главного тормозного цилиндра проходит по тормозным трубкам во вспомогательные цилиндры, расположенные рядом с колесами. При этом главный тормозной цилиндр пополняется из специального резервуара.

Гидравлическая тормозная система

Гидравлическая тормозная цепь включает в себя главный тормозной цилиндр, заполненный жидкостью, и несколько вспомогательных цилиндров, соединенных между собой трубками.

Главный и вспомогательные цилиндры

При нажатии педали тормоза главный тормозной цилиндр выдавливает жидкость во вспомогательные цилиндры.

Педаль приводит в движение поршень в главном тормозном цилиндре, и жидкость перемещается по трубке.

Попав во вспомогательные цилиндры, расположенные рядом с колесами, жидкость приводит в движение цилиндры и провоцирует срабатывание тормозов.

Давление жидкости равномерно распределяется по системе.

Тем не менее, суммарная площадь давления поршней во вспомогательных цилиндрах больше, чем площадь давления поршня в главном тормозном цилиндре.

Таким образом, поршню в главном цилиндре необходимо пройти путь в несколько десятков сантиметров, чтобы сдвинуть поршни во вспомогательных цилиндрах на пару сантиметров, которые необходимы для срабатывания тормозов.

Такая конструкция позволяет прикладывать к тормозам огромную силу, подобно той, что возникает в рычаге с длинным плечом даже при небольшом нажатии.

В современных автомобилях используются гидравлические цепи с двумя цилиндрами, один из которых является запасным.

В некоторых случаях одна цепь работает для передних колес, а вторая - для задних. Иногда одна цепь объединяет колеса попарно (переднее и заднее). В отдельных системах одна цепь обеспечивает работу тормозов на всех колесах.

Зачастую сильное торможение переносит вес автомобиля на передние колеса. При этом задние колеса блокируются, что приводит к заносу.

Для решения этой проблемы задние тормоза намеренно делают более слабыми, чем передние.

В некоторых автомобилях также присутствует ограничители давления, чувствительные к нагрузке. Когда давление в тормозной системе поднимается до уровня, при котором блокируются задние колеса, ограничительный клапан закрывается, и жидкость больше не поступает в задние тормоза.

В более продвинутых моделях используется сложная система антиблокировки, которые учитывают резкие изменения в скорости.

Такие системы быстро включают и выключают тормоза, чтобы предотвратить блокировку.

Тормоза с усилителем

Во многих автомобилях предусмотрено усиление тормозной системы, благодаря которому водителю не требуется прикладывать много усилий, чтобы затормозить.

Как правило, источником усиления является перепад давления от частичного вакуума во впускном коллекторе и потока воздуха за пределами корпуса.

Исполнительный механизм, который отвечает за усиление, связан с впускным коллектором трубами.

Исполнительный механизм прямого действия находится между педалью тормоза и главным тормозным цилиндром. Педаль может воздействовать на цилиндр напрямую, если механизм отказал или двигатель отключен.

Исполнительный механизм прямого действия находится между педалью тормоза и главным тормозным цилиндром. Педаль тормоза воздействует на рычаг, который, в свою очередь, запускает поршень главного тормозного цилиндра.

Помимо этого, педаль также воздействует на несколько воздушных клапанов, а поршень главного тормозного цилиндра оснащен большой резиновой диафрагмой.

Когда тормоза отключены, диафрагма обеими сторонами примыкает к вакууму во впускном коллекторе.

При нажатии на педаль клапан, соединяющий заднюю сторону диафрагмы с коллектором, закрывается, открывая клапан, впускающий воздух извне.

Под давлением воздуха диафрагма перемещает поршень главного тормозного цилиндра, усиливая работу тормозов.

При удерживании педали воздушный клапан больше не пропускает воздух, и давление в тормозах остается постоянным.

Если педаль была отпущена, пространство за диафрагмой открывается, давление снова падает, и диафрагма возвращается в первоначальное положение.

Когда двигатель останавливается, вакуум исчезает, но тормоза продолжают работать, т.к. педаль соединена с главным тормозным цилиндром механически. Тем не менее, для торможения в описанной ситуации потребуется гораздо больше усилий со стороны водителя.

Как работает усилитель тормоза

Тормоза не работают, обе стороны диафрагмы соприкасаются с вакуумом.

При нажатии на педаль на заднюю сторону диафрагмы воздействует воздух, и она двигается к цилиндру.

Некоторые автомобили снабжены механизмами непрямого действия, встроенными в линию гидравлической передачи между тормозами и главным тормозным цилиндром. Такой механизм не привязан к педали и может присутствовать в любом отделе моторного отсека.

Тем не менее, он тоже работает под действием вакуума из коллектора. При нажатии на педаль тормоза главный тормозной цилиндр обеспечивает гидравлическое давление на клапан, который запускает механизм.

Дисковые тормоза

Базовый тип дисковых тормозов с одной парой поршней. Для воздействия на колодки может использоваться один или несколько поршней. Суппорты могут быть качающимися или раздвижными.

Дисковый тормоз оборудован диском, который вращается вместе с колесом. Диск подпирается суппортом, в котором есть небольшие гидравлические поршни, работающие под управлением главного тормозного цилиндра.

Поршни давят на фрикционные накладки, которые прижимаются к диску, чтобы замедлить или остановить его. Эти накладки имеют изогнутую форму и покрывают большую часть диска.

В двухконтурных тормозных системах поршней может быть несколько.

Для торможения поршням необязательно проходить длинный путь, поэтому при отключении тормозов они не соприкасаются с диском и не имеют возвратных пружин.

При нажатии на педаль тормоза накладки прижимаются к диску под давлением жидкости.

Резиновые уплотнительные кольца, окружающие поршни, позволяют им постепенно продвигаться вперед по мере износа накладок, чтобы расстояние между диском и поршнем оставалось постоянным, и тормозная система не нуждалась в настройке.

В некоторых современных моделях накладки снабжены датчиками. При износе накладки контакты датчика обнажаются и замыкаются, зажигая аварийный сигнал на приборной панели.

Барабанные тормоза

Барабанный тормоз с первичной и вторичной колодками оснащен одним гидравлическим цилиндром. Тормоза с двумя первичными колодками имеют два цилиндра, которые устанавливаются на передних колесах.

Барабанный тормоз оборудован полым барабаном, который вращается вместе с колесом. Верх барабана покрыт неподвижной опорной плитой, на которой располагаются две изогнутые колодки с фрикционной обшивкой.

Под давлением жидкости поршни в цилиндрах раздвигаются, и обшивка колодок прижимается к барабану, замедляя или останавливая его.

При нажатии на педаль колодки прижимаются к барабану под действием поршней.

Каждая тормозная колодка соприкасается с рычагом и поршнем. Первичная колодка соприкасается с поршнем рабочей стороной, определяя направление вращения барабана.

При вращении барабан тянет колодку в противоположную сторону, обеспечивая эффект торможения.

В некоторых барабанах используются сдвоенные колодки, каждая из которых оснащена гидравлическим цилиндром. В других используется пара колодок (первичная и вторичная) с рычагами спереди.

Такая конструкция позволяет разводить колодки при наличии одного цилиндра с двумя поршнями.

Система с первичной и вторичной колодками является упрощенной и менее мощной, чем система с двумя ведущими колодками, поэтому она обычно устанавливается на задние колеса.

В любом случае, после отключения тормозов колодки принимают первоначальное положение благодаря пружинам возврата.

Перемещение колодок ограничивается регулятором. В старых системах используются механические регуляторы, которые требуют настройки по мере износа фрикционной обшивки. В современных системах регуляторы работают автоматически за счет храповых механизмов.

Барабанные тормоза могут отказывать при частом использовании, т.к. они перегреваются и не могут эффективно функционировать, пока не остынут. Диски обладают более открытой конструкцией и считаются более надежными.

Ручной тормоз

Механизм ручного тормоза

Ручной тормоз воздействует на колодки посредством механической системы, которая не задействует гидравлические цилиндры. Эта система состоит из рычагов, которые находятся в тормозном барабане и запускаются из салона вручную.

Помимо гидравлической тормозной системы все автомобили снабжены ручным тормозом, который действует на два колеса (как правило, задних).

Ручной тормоз дает возможность снизить скорость при отказе гидравлической системы, однако в основном используется на стоянках.

Рычаг ручного тормоза тянет трос или пару тросов, соединенных с тормозами совокупностью более мелких рычагов, шкивов и направляющих. Конкретные составляющие этой системы зависят от модели автомобиля.

Рычаги ручного тормоза удерживаются в нужном положении посредством храпового механизма. Механизм выключается по кнопку, освобождая рычаги.

В барабанных тормозах ручной тормоз воздействует на тормозную ленту, которая прижимается к барабанам.

В дисковых тормозах используется та же механика, однако суппорты обладают небольшими размерами, и на них сложно установить проводку, поэтому для каждого колеса предусматривается отдельный рычаг.

Пневматический тормозной привод для затормаживания автомобиля или прицепа использует сжатый воздух. Преимущества и недостатки пневматического привода во многом противоположны гидравлическому приводу.

Так, к преимуществам относят неограниченные запасы и дешевизну рабочего тела (воздух), сохранение работоспособности при небольшой разгерметизации, т. к. возможная утечка компенсируется подачей воздуха от компрессора, возможность использования на автопоездах для непосредственного управления тормозами прицепа, использование в других устройствах, таких как пневматический звуковой сигнал, привод переключения многоступенчатых коробок передач, усилитель сцепления, привод дверей автобуса, подкачка шин и т. п.

Недостатками пневмопривода являются: большое время срабатывания вследствие медленного поступления сжатого воздуха к удаленным воздухонаполняемым объемам через трубопроводы с малым диаметром, сложность конструкции, большие масса и размеры агрегатов из-за относительно небольшого рабочего давления, возможность выхода из строя при замерзании конденсата в трубопроводах и аппаратах при отрицательных температурах.


Рисунок 1- Простейший пневматический тормозной привод автомобиля:

1 - ресивер;

2 - педаль;

3 - кран;

4 - тормозной цилиндр;

5 - пружина;

6 - шток тормозного механизма;

7 - тормозная колодка

Простейший пневматический тормозной привод автомобиля (а) состоит из ресивера, в который подается сжатый воздух из компрессора, крана, приводимого в действие от педали, и тормозной камеры, шток которой связан с разжимным кулаком тормозного механизма.

При торможении поворотная пробка крана соединяет внутреннюю полость тормозной камеры с ресивером и сжатый воздух, воздействующий на диафрагму, приводит в работу тормозной механизм (б).

Давление воздуха в тормозной камере устанавливается такое же, как в ресивере. При повороте пробки крана в другое положение (а) сжатый воздух выходит из камеры в атмосферу. Разжимной кулак возвращается в первоначальное положение и происходит растормаживание.



Тормозную систему с пневматическим приводом применяют на большегрузных грузовых автомобилях и больших автобусах. Тормозное усилие в пневматическом приводе создается воздухом, поэтому при торможении водитель прикладывает к тормозной педали небольшое усилие, управляющее только подачей воздуха к тормозным механизмам. По сравнению с гидравлическим приводом пневмопривод имеет менее жесткие требования к герметичности всей системы, так как небольшая утечка воздуха при работе двигателя восполняется компрессором. Однако сложность конструкции приборов пневмопривода, их габаритные размеры и масса значительно выше, чем у гидропривода. Особенно усложняются системы пневмопривода на автомобилях, имеющих двухконтурную или многоконтурную схемы. Такие пневмоприводы применяют, например, на автомобилях МАЗ, ЛАЗ, КамАЗ и ЗИЛ-130 (с 1984 г.).

Наиболее простую схему имеет пневмопривод тормозов на автомобиле"ЗИ Л-1 3 0 выпуска до 1984 г.. В систему привода входят компрессор 1, манометр 2, баллоны 3 для сжатого воздуха, задние тормозные камеры 4, соединительная головка 5 для соединения с тормозной системой прицепа, разобщительный кран 6, тормозной кран 8, соединительные трубопроводы 7 и передние тормозные камеры 9.

При работе двигателя воздух, поступающий в компрессор через воздушный фильтр, сжимается и направляется в баллоны, где находится под давлением. Давление воздуха устанавливается регулятором давления, который находится в компрессоре и обеспечивает его работу вхолостую при достижении заданного уровня давления. Если водитель производит торможение, нажимая на тормозную педаль, то этим он воздействует на тормозной кран, открывающий поступление воздуха из баллонов в тормозные камеры колесных тормозов.

Рисунок 2- Схема пневмопривода тормозов автомобиля ЗИЛ-130

Тормозные камеры поворачивают разжимные кулаки колодок, которые разводятся и нажимают на тормозные барабаны колес, производя торможение.

При отпускании педали тормозной кран открывает выход сжатого воздуха из тормозных камер в атмосферу, в результате чего стяжные пружины отжимают колодки от барабанов, разжимный кулак поворачивается в обратную сторону и происходит растормаживание. Манометр, установленный в кабине, позволяет водителю следить за давлением воздуха в системе пневматического привода.

На автомобилях ЗИЛ-130 начиная с 1984 г. введены изменения в конструкцию тормозной системы, которые удовлетворяют современным требованиям безопасности движения. С этой целью в пневматическом тормозном приводе использованы приборы и аппараты тормозной системы автомобилей КамАЗ.

Привод обеспечивает работу тормозной системы автомобиля в качестве рабочего стояночного и запасного тормозов, а также выполняет аварийное растормаживание стояночного тормоза, управление тормозными механизмами колес прицепа и питание других пневматических систем автомобиля.

Гидравлический тормозной привод автомобилей является гидростатическим, т. е. таким, в котором передача энергии осуществляется давлением жидкости. Принцип действия гидростатического привода основан на свойстве несжимаемости жидкости, находящейся в покое, передавать создаваемое в любой точке давление во все другие точки при замкнутом объеме.


Принципиальная схема рабочей тормозной системы автомобиля :
1 - тормозной диск;
2 - скоба тормозного механизма передних колес;
3 - передний контур;
4 - главный тормозной цилиндр;
5 - бачок с датчиком аварийного падения уровня тормозной жидкости;
6 - вакуумный усилитель;
7 - толкатель;
8 - педаль тормоза;
9 - выключатель света торможения;
10 - тормозные колодки задних колес;
11 - тормозной цилиндр задних колес;
12 - задний контур;
13 - кожух полуоси заднего моста;
14 - нагрузочная пружина;
15 - регулятор давления;
16 - задние тросы;
17 - уравнитель;
18 - передний (центральный) трос;
19 - рычаг стояночного тормоза;
20 - сигнализатор аварийного падения уровня тормозной жидкости;
21 - выключатель сигнализатора стояночного тормоза;
22 - тормозная колодка передних колес

Принципиальная схема гидропривода тормозов показана на рисунке. Привод состоит из главного тормозного цилиндра, поршень которого связан с тормозной педалью, колесных цилиндров тормозных механизмов передних и задних колес, трубопроводов и шлангов, соединяющих все цилиндры, педали управления и усилителя приводного усилия.
Трубопроводы, внутренние полости главного тормозного и всех колесных цилиндров заполнены тормозной жидкостью. Показанные на рисунке регулятор тормозных сил и модулятор антиблокировочной системы , при их установке на автомобиле, также входят в состав гидропривода.
При нажатии педали поршень главного тормозного цилиндра вытесняет жидкость в трубопроводы и колесные цилиндры. В колесных цилиндрах тормозная жидкость заставляет переместиться все поршни, вследствие чего колодки тормозных механизмов прижимаются к барабанам (или дискам). Когда зазоры между колодками и барабанами (дисками) будут выбраны, вытеснение жидкости из главного тормозного цилиндра в колесные станет невозможным. При дальнейшем увеличении силы нажатия на педаль в приводе увеличивается давление жидкости и начинается одновременное торможение всех колес.
Чем большая сила приложена к педали, тем выше давление, создаваемое поршнем главного тормозного цилиндра на жидкость и тем большая сила воздействует через каждый поршень колесного цилиндра на колодку тормозного механизма. Таким образом, одновременное срабатывание всех тормозов и постоянное соотношение между силой на тормозной педали и приводными силами тормозов обеспечиваются самим принципом работы гидропривода. У современных приводов давление жидкости при экстренном торможении может достигать 10–15 МПа.
При отпускании тормозной педали она под действием возвратной пружины перемещается в исходное положение. В исходное положение своей пружиной возвращается также поршень главного тормозного цилиндра, стяжные пружины механизмов отводят колодки от барабанов (дисков). Тормозная жидкость из колесных цилиндров по трубопроводам вытесняется в главный тормозной цилиндр.
Преимуществами гидравлического привода являются быстрота срабатывания (вследствие несжимаемости жидкости и большой жесткости трубопроводов), высокий КПД, т. к. потери энергии связаны в основном с перемещением маловязкой жидкости из одного объема в другой, простота конструкции, небольшие масса и размеры вследствие большого приводного давления, удобство компоновки аппаратов привода и трубопроводов; возможность получения желаемого распределения тормозных усилий между осями автомобиля за счет различных диаметров поршней колесных цилиндров.
Недостатками гидропривода являются : потребность в специальной тормозной жидкости с высокой температурой кипения и низкой температурой загустевания; возможность выхода из строя при разгерметизации вследствие утечки жидкости при повреждении, или выхода из строя при попадании в привод воздуха (образование паровых пробок); значительное снижение КПД при низких температурах (ниже минус 30 °С); трудность использования на автопоездах для непосредственного управления тормозами прицепа.
Для использования в гидроприводах выпускаются специальные жидкости, называемые тормозными . Тормозные жидкости изготавливают на разных основах, например спиртовой, гликолевой или масляной. Их нельзя смешивать между собой из-за ухудшения свойств и образования хлопьев. Во избежание разрушения резиновых деталей тормозные жидкости, полученные из нефтепродуктов, допускается применять только в гидроприводах, в которых уплотнения и шланги выполнены из маслостойкой резины.
При использовании гидропривода он всегда выполняется двухконтурным, причем работоспособность одного контура не зависит от состояния второго. При такой схеме при единичной неисправности выходит из строя не весь привод, а лишь неисправный контур. Исправный контур играет роль запасной тормозной системы, с помощью которой автомобиль останавливается.


Способы разделения тормозного привода на два (1 и 2) независимых контура

Четыре тормозных механизма и их колесные цилиндры могут быть разнесены на два независимых контура различными способами, как показано на рисунке.
На схеме (рис. 5а) в один контур объединены первая секция главного цилиндра и колесные цилиндры передних тормозов. Второй контур образован второй секцией и цилиндрами задних тормозов. Такая схема с осевым разделением контуров применяется, например, на автомобилях УАЗ-3160, ГАЗ-3307. Более эффективной считается диагональная схема разделения контуров (рис. б), при которой в один контур объединяют колесные цилиндры правого переднего и левого заднего тормозов, а во второй контур - колесные цилиндры двух других тормозных механизмов (ВАЗ-2112). При такой схеме в случае неисправности всегда можно затормозить одно переднее и одно заднее колесо.
В остальных схемах, представленных на рис. 6.15, после отказа сохраняют работоспособность три или все четыре тормозных механизма, что еще больше повышает эффективность запасной системы. Так, гидропривод тормозов автомобиля Москвич-21412 (рис. в) выполнен с использованием двухпоршневого суппорта дискового механизма на передних колесах с большим и малым поршнями. Как видно из схемы, при отказе одного из контуров исправный контур запасной системы действует либо только на большие поршни суппорта переднего тормоза, либо на задние цилиндры и малые поршни переднего тормоза.
В схеме (рис. г) исправным всегда остается один из контуров, объединяющий колесные цилиндры двух передних тормозов и одного заднего (автомобиль Volvo). Наконец, на рис. 6.15д показана схема с полным дублированием (ЗИЛ-41045), в которой любой из контуров осуществляет торможение всех колес. В любой схеме обязательным является наличие двух независимых главных тормозных цилиндров. Конструктивно чаще всего это бывает сдвоенный главный цилиндр тандемного типа, с последовательно расположенными независимыми цилиндрами в одном корпусе и приводом от педали одним штоком. Но на некоторых автомобилях применяют два обычных главных цилиндра, установленных параллельно с приводом от педали через уравнительный рычаг и два штока.

Для обеспечения возможности торможения в случае отказа ка­кого-либо элемента рабочей тормозной системы тормозной привод разделяют на независимые контуры, каждый из которых в случае отказа другого автоматически выполняет функцию запасной тор­мозной системы. Схемы образования независимых контуров могут быть различны.

В простейшем случае (рис. 14.18 а) один контур обслуживает тормозные механизмы передних, а другой - задних колес. Однако вертикальные реакции передних и задних колес, определяющие максимально возможные тормозные реакции Лт, а следовательно, и замедление автомобиля, создаваемое передними или задними ко­лесами, могут отличаться весьма значительно. Так, например, пе­реднеприводные легковые автомобили в статике имеют вертикаль­ную реакцию передних колес большую, чем вертикальная реакция задних колес. При торможении неодинаковость статических вер­тикальных реакций усугубляется их динамическим перераспреде­лением. Рассчитанные на большую вертикальную реакцию передние тормозные механизмы таких автомобилей создают большие тор­мозные реакции Лт1, чем менее эффективные тормозные механизмы задних колес. Поэтому в случае отказа переднего контура макси­мальное замедление автомобиля будет невелико, примерно 0,33 от замедления исправного автомобиля. Примерно такое же замедление, но в случае отказа заднего тормозного контура, будет иметь грузовой автомобиль классической компоновочной схемы, у которого при­мерно двукратное превышение вертикальной реакции задних колес над вертикальной реакцией передних колес в статике не может быть скомпенсировано динамическим перераспределением реакций при торможении.

Гораздо лучшими свойствами обладает схема разделения на кон­туры, показанная на рис. 14.186. Каждый из тормозных механизмов передних колес приводится от обоих контуров, причем эффектив­ность привода различна. В гидравлическом приводе это обеспечи­вается за счет разности диаметров приводных (рабочих) цилиндров. Цилиндры меньшего диаметра включены в контур, общий с задними тормозными механизмами, а цилиндры большего диаметра приводят только передние тормозные механизмы. Соотношение диаметров цилиндров выбирается таким, чтобы при отказе любого контура автомобиль сохранял бы 50-процентную эффективность торможения. Очевидно, что на грузовом автомобиле с двойной ошиновкой задних колес привод от обоих контуров должны иметь задние тормозные механизмы.

Такие же с точки зрения сохранения эффективности торможения при отказе одного контура свойства имеет показанная на рис. 14.18 в диагональная схема. Однако большая разница в эффективности передних и задних тормозов автомобиля приводит в данном случае к заметным отрицательным последствиям. В легковом автомобиле большая тормозная реакция дороги переднего, например левого, колеса исправного контура - Ят,л (рис. 14.18е) по сравнению с мень­шей тормозной реакцией правого заднего колеса - /?т2п приведет к смещению вбок их равнодействующей Лт1. Наличие плеча h между равнодействующей /?TS и силой инерции pj приведет к воз­никновению крутящего момента Л/, поворачивающего автомобиль влево.


Рис. 14.18. Схемы двухконтурных тормозных приводов

Из рис. 14.18е видно, что продольная касательная реакция уп­равляемого колеса на радиусе, примерно равном плечу обкатки «а» (измеряемому от середины отпечатка шины до точки О, - пере­сечения дороги осью поворота колеса), создает крутящий момент, стремящийся повернуть колесо вокруг оси поворота. В случае тор­можения исправного автомобиля эти моменты, приложенные к пра­вому и левому колесам, замыкаются трапецией рулевого привода и компенсируют друг друга. При торможении автомобиля одним диагональным контуром момент Л/2 = я/?т]п поворачивает управ­ляемые колеса влево за счет зазоров в рулевом управлении, упругости его звеньев и упругости рук водителя. Таким образом, отрицательные эффекты от поворачивающих моментов mi и Л/2 складываются, что приводит к весьма неприятным последствиям. Для устранения указанного недостатка при диагональном разделении тормозного привода применяют отрицательное плечо обкатки «-а» (рис. 14.18 ж). Данное мероприятие при определенном сочетании конструктивных и эксплуатационных факторов позволяет свести суммарное действие моментов mi и Л/2 к нулю или, во всяком случае, радикально его уменьшить.

Наилучшими свойствами обладает показанная на рис. 14.18д схема разделения на контуры, предусматривающая полное сохра­нение тормозных качеств в случае отказа рабочей тормозной сис­темы. Необходимо только иметь в виду, что в этом случае к педали тормоза необходимо прикладывать существенно большее усилие. Однако такая схема сложна и применяется в основном на больших, дорогих легковых автомобилях.

Также редко применяется и показанная на рис. 14.18 г схема, которую можно рассматривать как некоторое сочетание двух пре­дыдущих.

Рабочие тормозные системы многих современных автомобилей имеют привод с двумя, а то и большим числом независимых контуров. В случае повреждения одного из них остальные продолжают действовать и, хотя менее эффективно, но все же обеспечивают торможение автомобиля.

Двухконтурный привод применяют и в рабочей тормозной системе выпускаемых сейчас автомобилей ГАЗ-53-12. По существу это две независимые системы: одна тормозит передние, а другая – задние колеса. Резервуаром для тормозной жидкости служит пополнительный бачок 7 (рис. 28), изготовленный из полупрозрачного материала, что позволяет контролировать уровень жидкости, не снимая крышку. Бачок разделен на два отсека, каждый из которых соединен со своей полостью в главном тормозном цилиндре 6 . При нажатии на педаль жидкость вытесняется из полостей главного цилиндра и по трубопроводам, через сигнализатор 5 неисправности гидропривода, через вакуумные усилители 10 и 11 нагнетается в колесные цилиндры 12 – происходит торможение колес.

Рис. 28 Схема двухконтурного гидравлического привода рабочей тормозной системы автомобиля ГАЗ-53 12:

1, 9 - передний и задний тормозные механизмы; 2 - впускная труба двигателя;

3 - запорный клапан; 4 - лампа сигнализатора; 5 - сигнализатор неисправности

гидропривода; 6 - главный цилиндр; 7 - наполнительный бачок;

8 - воздушный фильтр; 10, 11 - вакуумные усилители задних и

передних тормозов; 12 - колесный цилиндр

Колесные тормозные механизмы, колесные цилиндры и вакуумные усилители 1 такие же, как в ранее рассмотренной системе. Главный цилиндр образован корпусами 2 и 12 (рис. 29), соединенными фланцами. Стык корпусов уплотнен резино-выми кольцами 15 . В тщательно обработанных расточках корпусов помещены поршни 3 и 8 , уплотненные резиновыми кольцами 14 , а также головки 17 и 6 поршней, уплотненные манжетами 11 . Уплотнительные кольца 7 вставлены в торцовые

Рис. 29 Главный цилиндр двухконтурного гидропривода тормозной системы:

1 – клапан избыточного давления; 2 , 12 – корпуса; 3 , 8 – поршни;

4 , 20 – возвратные пружины поршней; 5 , 13 , 19 , 21 – упорные стержни;

6 , 17 – головки поршней; 7 , 14 , 15 – уплотнительные кольца; 9 – толкатель;

10 , 16 – упорные болты; 11 – манжеты; 18 , 22 – пружины

расточки головок поршней. В поршни вставлены стержни 5 и 19 , в бурты которых с одной стороны упираются пружины 4 и 20 , а с другой – пружины 18 .

В расторможенном состоянии благодаря пружинам 20 и 4 поршни и их головки смещены вперед (на рисунке – вправо): головки до упора в болты 16 и 10 , а поршни, преодолев сопротивление пружин 18 , продвигаются немного дальше, как позволяет толкатель 9 . Поэтому между поршнями и уплотнительными кольцами 7 головок образуются зазоры, через которые полости А и Б оказываются сообщенными с наполнительным бачком.

Когда нажимают на педаль, толкатель 9 перемещает поршень 8 назад (на рисунке – влево). При этом сначала выбирается зазор между поршнем и уплотнительным кольцом 7 головки, в результате чего полость Б и пополнительный бачок разобщаются. При дальнейшем совместном перемещении поршня и головки давление в полости Б нарастает и передается в контур задних колес, как показано стрелкой В. Одновременно этим же давлением перемещается назад поршень 3 вместе с головкой 17 , в результате чего нарастает давление в полости А, которое передается в контур передних колес (стрелка Г).

При растормаживании под действием пружин, стягивающих тормозные колодки, жидкость вытесняется из колесных цилиндров. Отжав клапаны 1 , она поступает в полости А и Б вслед за перемещающимися вперед поршнями и головками, а после того как между ними образуется зазор, уходит в пополнительный бачок.

Если из поврежденного контура задних колес вытекла жидкость, то при торможении поршень 8 движется, не испытывая противодавления до тех пор, пока стержень 5 не упрется в стержень 19 . После этого оба поршня перемещаются вместе, создавая давление жидкости в полости А, и происходит торможение только передних колес.

Если поврежден только контур передних колес, а значит, жидкость вытекла из полости А, то в начале торможения давление в полости Б нарастает незначительно и определяется сопротивлением пружины 20 , сжимаемой перемещающимся поршнем 3 . Так продолжается до упора стержня 19 в стержень 21 , после чего движется лишь поршень 8 , создавая давление в контуре задних колес, которые затормаживаются. Таким образом, при повреждении одного из контуров значительно увеличивается свободный ход тормозной педали и ухудшается интенсивность торможения. Поэтому автомобиль надо вести особо осторожно и лишь до места, где повреждение можно устранить.

Сигнализатор неисправности гидропривода – это переключатель золотникового типа. В поперечном канале его корпуса 1 (рис. 30) установлены поршни 2 и 3 , уплотненные резиновыми кольцами. Когда оба контура исправны, при торможении жидкость проходит через сигнализатор (как показано стрелками), обтекая хвостовики поршней.

Если один контур поврежден, то при торможении под действием давления жидкости из полости исправного контура оба поршня смещаются в сторону поврежденного, так как в нем не создается противодавления. При этом шарик 4 , преодолевая сопротивление пружины, выдавливается из проточки поршня 3 , через шток замыкает контакты датчика 5 и на щитке приборов загорается сигнальная лампа.

После устранения неисправности удаляют воздух из поврежденного контура, после чего, отвинтив на 1,5 ... 2 оборота клапан прокачки неповрежденного контура, плавно нажимают на педаль до момента погасания сигнальной лампы и, удерживая ее в этом положении, завинчивают клапан.

Рис. 30 Сигнализатор неисправности привода

тормозной системы автомобиля ГАЗ-53-12:

1 – корпус; 2 , 3 – поршни; 4 – шарик; 5 – датчик

Контрольные вопросы

1 Назначение тормозной системы тракторов и автомобилей.

2 Что называется тормозным путем и от чего он зависит?По каким критериям определяют показатели тормозных качеств автомобиля?

3 Какие требования предъявляют к тормозным системам?

4 Какие вы знаете виды тормозных систем?

5 Какие вы знаете способы торможения?

6 Назначение тормозного механизма, и какие они бывают?

7 Как различают тормозные механизмы по типу тормозных деталей?

8 Расскажите о работе ленточного тормоза.

9 Как работает колодочный тормоз?

10 Конструкция и принцип работы дискового тормоза.

11 Как различаются по принципу действия тормозные приводы?

12 Работа тормозных систем с механическим приводом.

13 Работа тормозных систем с гидравлическим приводом. Литература: .